

TR0115 (v1.1) June 10, 2005 1

VHDL Synthesis Reference

Summary This comprehensive reference provides detailed info
with respect

Technical Reference
TR0115 (v1.1) June 10, 2005

rmation
 to synthesis of VHDL code. It also contains an

overview section regarding the syntax of the VHDL
Language.

VHDL is a hardware description language (HDL). It contains the features of a conventional
programming language, a classical PLD programming language, and a netlist, as well as design

VHDL is a large language and it provides many features. This reference does not attempt to describe

package "textio", for example. The exceptions and constraints on the Synthesizer's VHDL support are

The VHDL Synthesizer uses the VHDL'93 version of VHDL. This version is basically a superset of the
87.

ve, so a design description can contain UPPERCASE or lowercase text. In
this reference, examples are all lowercase. VHDL reserved words in both the text and the examples

ent
reset: in bit; sum: out integer);

nd counter ;

bold In examples, bold type indicates a reserved word. In the example above, entity, is, port,

plain-text nable identifier or another VHDL construct.
 Reserved words cannot be used as user-defined identifiers. In the example above, the
name "sum" is a user-defined identifier.

management features.

the full language - rather it introduces enough of the language to enable useful design.

The VHDL Synthesis engine supports most of the VHDL language, however, some sections of the
language have meanings that are unclear in the context of logic design - the file operations in the

listed in the topics 'Unsupported Constructs', 'Ignored Constructs', and 'Constrained Constructs'.

previous standard VHDL'

Notation Conventions
VHDL is not case-sensiti

are bold, for example :

ity counter is

port (clk,
e

in, out, and end are all reserved words

Regular plain type represents a user-defi

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Structure of a VHDL Design Description
The basic organization of a VHDL design description is shown below:

A package is an optional statement for shared declarations. An entity contains declarations of the
design I/O, and an architecture contains the description of the design. A design may contain any
number of package, entity and architecture statements. Most of the examples in this guide use a single
entity-architecture pair.

An architecture contains concurrent statements. Concurrent statements (like netlists and classic PLD
programming languages) are evaluated independently of the order in which they appear. Values are
passed between statements by signals; an assignment to a signal (<=) implies a driver. A signal can
be thought of as a physical wire (or bundle of wires).

The most powerful VHDL constructs occur within sequential statements. These must be placed inside
a particular concurrent statement, the process statement, or inside a function or procedure.

Sequential statements are very similar to programming language statements: they are executed in the
order they are written (subject to if statements, return statements, etc.). Values are held in variables
and constants. Signals are used to pass values in and out of a process, to and from other concurrent
statements (or the same statement).

2 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Several concepts are important to the understanding of VHDL. They include: the distinction between
concurrent statements and sequential statements, and the understanding that signals pass values
between concurrent statements, and variables pass values between sequential statements.

Sequential statements in VHDL refer to statement ordering, not to the type of logic compiled.
Sequential statements may be used to compile both combinational and sequential logic.

VHDL can be written at three levels of abstraction: structural, data flow, and behavioral. These three
levels can be mixed.

The following topics: Structural VHDL, Data Flow VHDL, and Behavioral VHDL, introduce the
structural, data flow, and behavioral design methods and show VHDL code fragments that are written
at each level of abstraction.

Variations of the following design are used to illustrate the differences:

entity hello is

port (clock, reset : in boolean; char : out character);

end hello;

architecture behavioral of hello is

constant char_sequence : string := "hello world";

signal step : integer range 1 to char_sequence'high := 1;

begin

-- Counter
process (reset,clock)

begin

if reset then

step <= 1;
elsif clock and clock'event then

if step = char_sequence'high then

step <= 1;
else

step <= step + 1;
end if;

end if;

end process;

-- Output Decoder

char <= char_sequence(step);
end behavioral ;

TR0115 (v1.1) June 10, 2005 3

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

This design compiles to a simple waveform generator with two inputs (clock and reset) and eight
outputs. The output sequences through the ASCII codes for each of the eleven characters in the string
"hello world". The codes change some logic delay after each rising edge of the clock. When the circuit
is reset, the output is the code for 'h' -- reset is asynchronous.

Structural VHDL
A structural VHDL design description consists of component instantiation statements, which are
concurrent statements. For example:

u0: inv port map (a_2, b_5);

This is a netlist-level description. As such, you probably do not want to type many statements at the
structural level. Schematic capture has long been known as an easier way to enter netlists.

Structural VHDL simply describes the interconnection of hierarchy. Description of the function requires
the data flow or behavioral levels. Component instantiation statements are useful for sections of design
that are reused, and for integrating designs.

The design in the following example has been partitioned into two instantiated components. Note that
the components are declared but not defined in the example. The components would be defined as
entity/architecture pairs.

entity hello is

port (clock, reset : in boolean; char : out character);

end hello;

architecture structural of hello is

constant char_sequence : string := "hello world";

subtype short is integer range 1 to char_sequence'high;

signal step : short;

component counter

port (clock, reset : in boolean; num : out short);

end component;

component decoder

port (num : in short ; res : out character);

end component;

begin

U0 : counter port map (clock,reset,step);

U1 : decoder port map (step,char);

end structural;

4 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

This is useful if counter and decoder had been previously created and compiled into two PALs. The
availability of a larger PAL allows you to integrate the design by instantiating these as components and
compiling for the larger device.

Data Flow VHDL
Another concurrent statement is the signal assignment. For example:

a <= b and c;

m <= in1 when a1 else in2;

Assignments at this level are referred to as data flow descriptions. They are sometimes referred to as
RTL (register-transfer-level) descriptions.

This example could be rewritten as :

entity hello is

port (clock, reset: in boolean; char : out character);

end hello;

architecture data_flow of hello is

constant char_sequence : string := "hello world";

signal step0, step1 :integer range 1 to char_sequence'high := 0;

begin

-- Output decoder

char <= char_sequence(step1);

-- Counter logic
step1 <= 1 when step0 = char_sequence'high else step0 + 1;

-- Counter flip flops
step0 <= 1 when reset else

step1 when clock and clock'event;

end data_flow;

In data flow descriptions combinational logic is described with the signal assignment (<=). There is no
register assignment operator; sequential logic is inferred from incomplete specification (of step0) as in
the example above.

TR0115 (v1.1) June 10, 2005 5

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Behavioral VHDL
The most powerful concurrent statement is the process statement. The process statement contains
sequential statements and allows designs to be described at the behavioral level of abstraction. For
example :

process (insig)

variable var1: integer; -- variable declaration

begin

var1:= insig; -- variable assignment

var1:= function_name(var1 + 1); -- function call
end process;

In hardware design the process statement is used in two ways: one for combinational logic and one for
sequential logic. To describe combinational logic the general form of the process statement is :

process (signal_name, signal_name, signal_name,......)

begin

.....
end process;

and the general form for sequential logic :

process (clock_signal)

begin

if clock_signal and clock_signal'event then

....
end if;

end process;

For combinational logic there is a list of all process input signals after the keyword process. For
sequential logic there is either: (a) no sensitivity list but there is a wait statement; or (b) a sensitivity list
containing the clock and the statements are within an if statement.

It is illegal in VHDL for a process to have both a sensitivity list and a wait statement. To have neither
implies no logic.

Our example could be viewed as two processes: one for the sequential counter, and one of the
combinatorial decoder :

entity hello is

port (clock, reset : in boolean; char : out character);

end hello;

architecture behavioral of hello is

6 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

constant char_sequence : string := "hello world";

signal step : integer range 1 to char_sequence'high := 1;

begin

counter : process (reset, clock)

begin

if reset then

step <= 1;
elsif clock and clock'event then

if step = char_sequence'high then

step <= 1;
else

step <= step + 1;
end if;

end if;

end process ;

decoder :process (step)

begin

char <= char_sequence(step);
end process;

end behavioral;

VHDL Types
VHDL contains the usual programming language data types, such as:

•

• character

•

• real

• string

• bit

• bit_vector

boolean

integer

These types have their usual meanings. In addition, VHDL has the types:

The type bit can have a value of '0' or '1'. A bit_vector is an array of bits. (Similarly, a string is an array
of characters in VHDL just as it is in Pascal).

Most electrical engineers use the IEEE 1164-standard-logic types in place of bit and bit_vector.

TR0115 (v1.1) June 10, 2005 7

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

std_logic •

• std_logic_vector

These are declared in the IEEE library in package std_logic_1164

To make these declarations visible, an entity that uses these types is prefixed with a library declaration
and a use clause:

library ieee;

use ieee.std_logic_1164.all;

Definitions for all of the predefined types can be found in the file std.vhd, which contains the
package standard.

The type of a variable, signal, or constant (which are collectively called objects) determines the
operators that are predefined for that object. For hardware design, the type also determines the
number -- and possibly the encoding scheme used -- for the wires that are implemented for that object.

Type-checking is performed during analysis. Types are used to resolve overloaded subprograms.
Users may define their own types, which may be scalars, arrays, or records.

VHDL also allows subtypes. This is simply a mechanism to define a subset of a type. More information
on the impact of types and subtypes on synthesis is contained in the topic 'Synthesis of VHDL Types'.

Simulatable, but not necessarily synthesizable
This section is primarily for experienced VHDL simulation users who have VHDL code that has been
developed using a VHDL simulator.

VHDL is a standard, how can there be a problem? Many VHDL models are not suitable for synthesis,
such as high level performance models, environment models for stimulus/response, or system models
including software, hardware, and physical aspects.

Synthesis assumes that the VHDL code describes the logic of a design, and not some model of the
design. This assumption puts additional constraints on the programmer. Most of the remainder of this
guide describes how to program in VHDL within these constraints.

A design description may be correctly specified in English, but may have no practical hardware
implementation (e.g. H.G.Wells' Time Machine). The same is true for a design specified in VHDL,
which may have no practical implementation. Just because its written in a Hardware Description
Language doesn't mean it describes realizable hardware!

For example, suppose you have a VHDL simulation model of a PAL, lets say the model configures
itself from a JEDEC file during simulation initialization. The model actually simulates the programming
and logic of the PAL. It describes more than just the hardware, the model also describes the
manufacturing step when the PAL was programmed. A synthesizable VHDL model would only describe
the component function and not the earlier manufacturing step.

Some other issues
Hardware design adds several additional constraints such as gated clocks. These are not a constraint
in a simulation where values may be written to computer memory without concern for electrical
glitches. Hardware design requires care be taken in controlling the clocking of memory elements.

8 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

A simulation model may also describe the timing characteristics of a design. These are ignored by the
synthesis tool, which considers timing a result of the hardware realization of the design. A VHDL model
that depends on the timing for correct operation may not synthesize to the expected result.

A simulation model may use enumerated types to:

•

•

represent the encoding of a group of wires (e.g. load store execute), perhaps as part of a state
machine description

represent the electrical characteristic on a single wire (e.g. high impedance, resistive, strong), as
well as the state of the simulation (unknown, uninitialized)

Within VHDL, a synthesis system has no way to distinguish the meaning in each case. The synthesizer
assumes the encoding representation for enumerated types unless the encoding is explicitly specified
using the attribute 'enum_encoding'.

TR0115 (v1.1) June 10, 2005 9

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

PLD Programming using VHDL
VHDL is a large language. It is an impractical task to learn the whole language before trying to use it.
Fortunately, it is not necessary to learn the whole language in order to use VHDL (the same is true of
any computer or even human language). This section presents a view of VHDL that should be familiar
to users of classic PLD programming languages.

Just as in PLD programming, the design I/O, combinational logic, sequential logic, and state machines
can be described. Initially, only signals of type std_logic and std_logic_vector (a 1 dimensional array of
std_logic) will be considered. These types allow you to do logical operations (and, or...) and relational
operations (equal, greater than,....).

Design I/0
Design I/O is described using a port statement. Ports may have mode IN, OUT , INOUT or BUFFER.
The mode describes the direction of data flow. The default mode of a port is IN. Values may be
assigned to ports of mode OUT and INOUT or BUFFER, and read from ports mode IN and INOUT or
BUFFER. Port statements occur within an entity. For example :

entity ent1 is

port (a0,a1,b0,b1 : in std_logic; c0, c1 : out std_logic);

end ent1;

entity ent2 is

port (a,b : std_logic_vector(0 to 5);

sel : std_logic; c : out std_logic_vector(0 to 5)) ;

end ent2;

INOUT and BUFFER are used to specify routing on ports. An INOUT port specifies bi-directional
dataflow, and a BUFFER port is a unidirectional OUT that you can read from. INOUT describes a
signal path that runs through a pin and back into the design: "pin feedback" in PLDs or an IO block in
some FPGAs. BUFFER describes a signal path that drives an output buffer to a pin and internal logic:
"register feedback" in PLDs or internal routing in FPGAs. INOUT is required to specify pin feedback.
Register feedback may be specified using BUFFER or using OUT and an extra signal.

It is also a convention to use another standard, IEEE 1164. To use this standard, the following two
lines are written before each entity (or package) to provide visibility to the definition of 'std_logic'. This
is not required, it's just a convention.

library ieee;

use ieee.std_logic_1164.all;

10 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Combinational Logic
Combinational logic may be described using concurrent statements, just like equations in PLD
languages. Concurrent statements occur within an architecture. Note that an architecture references an
entity.

The equations assign values to signals. Ports are examples of signals; all signals must be declared
before they are used. A two bit adder can be described using boolean equations :

architecture adder of ent1 is

signal d, e : std_logic;

begin

d <= b0 and a0;

e <= b1 xor a1;

c0 <= (b0 and not a0) or (not b0 and a0);

c1 <= (e and not d) or (not e and d);

end adder;

Conditional assignment can also be performed. Here conditional assignment is used to build a mux:

architecture mux1 of ent2 is

begin

c <= a when sel = '1' else b;

end mux1;

Note that omitting the 'else b' above would specify a latch:

c <= a when sel = '1';

because this would then have the same meaning as:

c <= a when sel = '1' else c;

The meaning is different to some PLD languages, which may assume a default else to be 'zero', or
perhaps 'don’t care'. VHDL'93 is also different from VHDL'87 which required the else to be present.

Generate is a concurrent looping structure. This construct allows another possible implementation of
the mux. This example also illustrates selecting elements of arrays:

architecture mux2 of ent2 is

begin

for i in 0 to 5 generate

c(i) <= (a(i) and sel) or (b(i) and not sel);

end generate;

end mux2;

TR0115 (v1.1) June 10, 2005 11

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Registers and Tri-state
VHDL does not contain a register assignment operator; registers are inferred from usage. Therefore, a
D latch could be described :

q <= d when clk = '1';

and a D flip flop :

q <= d when clk = '1' and clk'event

and a D flip flop with asynchronous reset:

q <= '0' when rst = '1' else d when clk = '1' and clk'event

In practice, the clk'event expression is a little cumbersome. This can be improved upon by using the
rising_edge () function from std_logic_1164. In the following example output registers are added to the
combinational adder:

library ieee;

use ieee.std_logic_1164.all;

entity counter is

port (a0,a1,b0,b1,clk : in std_logic; c0, c1 : out std_logic);

end counter;

architecture adder_ff of counter is

signal d, e, f, g : std_logic;

begin

 d <= b0 and a0;

 e <= b1 xor a1;

 f <= (b0 and not a0) or (not b0 and a0);

 g <= (e and not d) or (not e and d);

 c0 <= f when rising_edge(clk);

 c1 <= g when rising_edge(clk);

end adder_ff;

Tristates can be added in much the same way as flip flops, by using a conditional assignment of 'Z'
(here controlled by an input oe):

architecture adder_ff_tri of counter is

signal d, e, f, g, h, i : std_logic;

begin

d <= b0 and a0;

e <= b1 xor a1;

f <= (b0 and not a0) or (not b0 and a0);

12 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

g <= (e and not d) or (not e and d);

h <= f when rising_edge(clk);

i <= g when rising_edge(clk);

c0 <= h when oe = '1' else 'Z';

c1 <= i when oe = '1' else 'Z';

end adder_ff_tri;

Procedures can be used to make the intent of the design a little clearer, such as moving the
combinational logic into a procedure. Notice that procedures contain programming language like
'sequential statements' and that intermediate values in the example below are held in variables. Notice
also that signals are assigned with "<=", and variables with ":=". Like programming languages, the
order of sequential statements is important.

architecture using_procedure of counter is

signal f, g : std_logic;

procedure add (signal a0,a1,b0,b1 : std_logic;

signal c0,c1 : out std_logic) is

variable x,y : std_logic;

begin

x := b0 and a0;

y := b1 xor a1;

c0 <= (b0 and not a0) or (not b0 and a0);

c1 <= (y and not x) or (not y and x);

end;

begin

add (a0, a1, b0, b1, f, g);
c0 <= f when rising_edge(clk);

c1 <= g when rising_edge(clk);

end using_procedure;

State Machines
There is no state transition view in VHDL, however, it does support a behavioral view. This allows
design description in a programming-language-like way. Sequential statements may also occur in
processes.

q <= d when rising_edge(clk);

An exactly equivalent statement is :

TR0115 (v1.1) June 10, 2005 13

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

process(clk)

begin

if rising_edge(clk) then

q <= d;
end if;

end process;

The process statement may contain many sequential statements. This simple behavioral description is
very like a state machine description in a classic PLD language.

library ieee;

use ieee.std_logic_1164.all;

entity ent5 is

port (clk,reset : in std_logic;

p : buffer std_logic_vector(1 downto 0));

end ent5 ;

architecture counter1 of ent5 is

begin

process (clk, rst)

begin

if reset = '1' then

p <= "00";
elsif rising _edge(clk) then

case p is

when "00" => p <= "01";

when "01" => p <= "10";

when "10" => p <= "11";

when "11" => p <= "00";

end case;

end if;

end process ;

end counter1 ;

Although the process statement can be used as a way to describe state machines, it more generally
allows behavioral modeling of both combinational and sequential logic.

It is strongly recommended that you read the topics 'Programming Sequential Logic' and 'Programming
Finite State Machines' before attempting to write process statements; it is important to understand the
impact of the wait statement on signals and variables in the process statement.

14 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Hierarchy
In VHDL each entity and architecture combination defines an element of hierarchy. Hierarchy may be
instantiated using components. Since there is a default binding between a component and an entity
with the same name, a hierarchical design instantiating Child in Parent looks like:

---Child
library ieee;

use ieee.std_logic_1164.all;

entity Child is

port (I : std_logic_vector(2 downto 0) ;

O : out std_logic_vector(0 to 2));

end Child;

architecture behavior of Child is

begin

 o <= i;
end;

---Parent
use ieee.std_logic_1164.all;

entity Parent is

port(a : std_logic_vector(7 downto 5);

v : out std_logic_vector(1 to 3));

end Parent;

architecture behavior of Parent is

 -- component declaration , bound to Entity Child above
component Child

port (I : std_logic_vector(2 downto 0) ;

O : out std_logic_vector(0 to 2));

end component;

begin

-- component instantiation
u0 : Child port map (a,v);

end;

TR0115 (v1.1) June 10, 2005 15

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Hierarchy also allows VHDL design partitioning, reuse, and incremental testing. VHDL synthesis
incorporates some additional semantics of hierarchy; including controlling the logic optimize granularity,
hierarchical compile, and instantiating silicon specific components as shown below.

---Parent
library ieee;

use ieee.std_logic_1164.all;

entity Parent is

port (a,en : std_logic_vector(2 downto 0);

v : out std_logic);

end Parent;

architecture behavior of Parent is

-- component declaration , unbound

-- ASSUMES 'TriBuf' and 'Pullup' are silicon specific components

-- defined by some downstream tool.
component TriBuf is

port (I,T : std_logic ; O : out std_logic);

end component;

component Pullup is

port (O : out std_logic);

end component;

signal tri_net : std_logic;

begin

-- component instantiations
u0 : TriBuf port map (a(0), en(0), tri_net);

u1 : TriBuf port map (a(1), en(1), tri_net);

u2 : TriBuf port map (a(2), en(2), tri_net);

u3 : Pullup port map (tri_net);

v <= tri_net;
end;

16 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Types
The use of types other than 'std_logic' and 'std_vector_logic' can make your design much easier to
read. It is good programming practice to put all of your type definitions in a package, and make the
package contents visible with a use clause. For example:
package type_defs is

subtype very_short is integer range 0 to 3;

end type_defs;

library ieee;

use ieee.std_logic_1164.all;

use work.type_defs.all;

entity counter2 is

port (clk, reset : std_logic; p : buffer very_short);

end counter2 ;

architecture using_ints of counter2 is

begin

process(clk,reset)

begin

if reset = '1' then

p <= 0;
elsif rising_edge(clk) then

p <= p + 1;
end if;

end process;

end;

In this example, type integer has been used because the "+" operator is defined for integers, but not for
std_logic_vectors.

Sometimes there are other packages written by third parties that you can use, such as the Synopsys
packages included with the Synthesizer. One of these packages defines a "+" operation between a
std_logic_vector and an integer. Using this package the example can be rewritten:

TR0115 (v1.1) June 10, 2005 17

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity counter2 is

port (clk, reset : std_logic;

p : buffer std_logic_vector(1 downto 0));

end counter2 ;

architecture using_ints of counter2 is

begin

process(clk,reset)

begin

if reset = '1' then

p <= "00";
elsif rising_edge(clk) then

p <= p + 1;
end if;

end process;

end;

It is a convention that the Synopsys packages be placed in the IEEE library, however, they are not an
IEEE standard. To add these packages to the IEEE library use the lib alias compile option to specify
ieee.vhd and synopsys.vhd.

Compiling
You can compile each design unit (an entity and an architecture) one at a time and link the results with
some downstream tool, or you can compile your whole design in one pass. The former is probably the
best approach during design development, the latter is the easiest if you are importing a pre-existing
design.

When compiling the whole design in one pass there can be a problem due to the constraints of
downstream tools if the compiled data format is Open Abel 2. There is no problem if the complied data
format is EDIF or DSL. The problem may occur with large designs and the solution requires that the
design be compiled in partitions of no more than 5000 compiled gates as described below.

The compile and link methodology for EDIF and DSL allows any compile granularity as long as the
downstream tool supports linking of multiple files, this linking is usually automatic, when the linker
encounters an undefined component it assumes the component is defined in a file of the same name
as the component. When compiling lower levels it may be necessary to inhibit IO buffer insertion with
a compile option.

18 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

It is possible to write VHDL code where the logic of a design unit depends upon another design unit.
For example if generics, or ports of an unconstrained array type, or signals declared in packages are
used. In this case the parent and child must be compiled at the same time, this case does occur but is
not the most common usage.

Considerations when the compiled data format is Open Abel 2
Before compiling a design, you should consider the compile granularity. It is uncommon to compile a
large design in one big "Partition". Partitioning a design into several Partitions of 500 to 5000 output
gates each is most common.

A Partition may consist of one or more VHDL entities or architecture pairs and may be contained in one
or more .vhd files. The method for specifying file names is described in the documentation for the
software that calls the Synthesizer's compiler. Each Partition compiles to one output netlist file. Note
that specifying the logic compile granularity is distinct from specifying the logic optimize granularity.

To compile a Partition, do the following :

•

•

•

•

•

specify the files(s)

specify the top level of this Partition

compile VHDL

Several Partitions may be compiled in any order, then linked with a netlist linker.

For each Partition:

{

/* do one Partition */

a) specify files(s)

b) specify the top level of this Partition

c) compile VHDL

}

Link the output files.

Choose a Partition size of 500 to 5000 output gates because :

Smaller Partitions give faster compiles for design iterations.

Some downstream tools exhibit performance constraints with large Partitions.

This partitioning is important to your success. If the design is not your design and you don't know how
much logic (output gates) it contains, then try some tests on parts of the design before selecting the
partitions. Not partitioning a large design is probably a bad choice. Note, however, that partitions of 500
gates are not always required; sometimes a Partition just connects other Partitions and contains no
logic.

There is a special case in partitioning for synthesis. If a VHDL component instantiation uses 'generic
map', the parent and child must be compiled in the same Partition. The Parent is the Architecture
containing the instantiation, and Child is the instantiated Entity. Because generic map implies different
logic for each instance, it is possible to have a case where the same Child is compiled in several
different Partitions.

TR0115 (v1.1) June 10, 2005 19

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Debugging
A very personal issue - here are some suggestions for debugging the specification and implementation
of your design.

System level simulation
Simulate your VHDL design before synthesis using a third party VHDL simulator. This allows you to
verify the specification of your design. If you don't have a VHDL simulator, run the Synthesizer with the
compile option optimize set to zero (to minimize compile time), and simulate the output with your
equation or gate level simulator.

Hierarchy
Partition your design into entity/architecture references as components. Compile each entity
separately. Simulate using a third party equation or netlist simulator to verify functionality.

Check the size of the logic in this module. Is it about what you expected?

Using hierarchy to represent the modules of your design will result in faster and better optimization,
and may allow you to reuse these design units in future designs.

Attribute 'critical'
Critical forces a signal to be retained in the output description. This allows you to trace a VHDL signal
using your third party equation or netlist simulator.

The name of the VHDL signal will be maintained - but may be prefixed with instance, block labels, or
package names, and suffixed with a "_n", if it represents more than one wire.

Log file
This file contains additional information about inferred logic structures. The information is printed on a
per process basis, indicating the inferred structure, type of any control signals, and a name.

flip flop [type] <name> [bit]

latch [type] <name> [bit]

tristate <name> [bit]

critical <name> [bit]

comb fb <name> [bit]

macrocell <name>

This information lists the inferred structure. The name field represents the name of an inferred logic
element. The name will be a local signal or variable name from within the VHDL source code. The
name of the structure in the output file will be derived within a larger context and may be different. If no
user recognizable name exists, the name field will contain "[anonymous]". The bit field is optional. A
macrocell name will be a predefined Xblox or LPM name.

Note that the design statistics printed at the end of the compile may not be the same as the sum of the
per process inference information. There are three possible reasons for this:

•

•

Optimization may remove or change inferred structures.

Additional combinational feedback paths explicitly specified (i.e. not inferred) between processes.

20 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

• Additional instantiated macrocells.

The compiler will also report in the log file signal assignment and usage that is legal VHDL but that
indicates a possible programming error. These reports can indicate subtle problems such as
comparing arrays of different lengths, or mismatch between a component port declaration and its entity
port declaration.

700:NOTE: Signal 'name' is used but not assigned and is driven by its default value.

701:NOTE: Port 'name' is not assigned and is driven by its default value.

702: NOTE: Signal 'name' is assigned but not used.

703: NOTE: Port 'name' is not used.

Report and assert statements
The VHDL report statement specifies no logic and is useful for following the execution of the compiler --
perhaps to see when functions are called or to see iterations of a loop. For example:

entity loop_stmt is

port (a: std_logic_vector (0 to 3);

m: out std_logic_vector (0 to 3));

end loop_stmt;

architecture example of loop_stmt is

begin

process (a)

variable b: integer;

begin

b := 1;
while b < 7 loop

report "Loop number = " & integer'image(b);

b := b + 1;
end loop;

end process;

end example;

If an assert statement is used in place of a report statement, the value of the assert condition must be
false in order for a message to be written. In synthesis, if the value of condition depends upon a signal,
it is not possible for the compiler to evaluate to either true or false. In this case no message is written
(i.e. as if true). This can lead to confusion during debugging. The best plan is not to use signals or
variables in the assert condition. Also note: the execution of the report or assert statement should not
depend on an if or case statement - that in turn depends on signals or variables.

TR0115 (v1.1) June 10, 2005 21

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Downstream Tools
Third-party tools that take the output from the Synthesizer's compiler are referred to as downstream
tools. Downstream tools sometimes make use of attributes (also called properties or parameters) within
the netlist to direct their operation. Attribute examples include placement information such as pin
number or logic cell location name. These are added using VHDL attributes or VHDL generic maps.

The supported features depend on the output format and the way it supports properties. The output
format depends on the OEM environment that calls the compiler.

Understanding Synthesis Tools
It is important to understand that synthesis tools do not design for you. Synthesis tools do handle
design details to enable you to be more productive.

The single most productive thing you can do is to be aware of what, and how much hardware you are
describing using an HDL.

Conversely, writing HDL without considering the hardware, and expecting the synthesis tool to 'do the
design' is a recipe for disaster. A common mistake is to create a design description, validate with a
simulator, and assume that a correct specification must also be a good specification.

22 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Programming Combinational Logic
This section shows the relationship between basic VHDL statements and combinational logic. The
resulting logic is represented by schematics (one possible representation of the design), provided to
illustrate this relationship. The actual implementation created by the Synthesizer depends upon other
VHDL statements in the design that affect the logic minimization, and on the target technology, which
affects the available gate types.

Most of the operators and statements used to describe combinational logic are the same as those
found in any programming language. Some VHDL operators are more expensive to compile because
they require more gates to implement (like programming languages where some operators take more
cycles to execute). You need to be aware of these factors. This section describes the relative costs
associated with various operators.

If an operand is a constant, less logic will be generated. If both operands are constants, the logic can
be collapsed during compilation, and the cost of the operator is zero gates. Using constants (or more
generally metalogic expressions) wherever possible means that the design description will not contain
extra functionality. The result will compile faster and produce a smaller implementation.

Certain operators are generally restricted to use with specific types. See 'Logical Operators' and
'Arithmetic Operators' for more information.

In VHDL, operators can also be redefined for any type. This is known as operator overloading, but it is
outside the scope of this reference.

Logical Operators
VHDL provides the following logical operators:

• and

• or

•

• nor

•

•

• not

nand

xor

xnor

These operators are defined for the types bit, boolean and arrays of bit or boolean (for example,
bit_vector). The compilation of logic is fairly direct from the language construct, to its implementation in
gates, as shown in the following examples:

entity logical_ops_1 is

port (a, b, c, d: in bit; m: out bit);

end logical_ops_1;

architecture example of logical_ops_1 is

signal e: bit;

TR0115 (v1.1) June 10, 2005 23

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

begin

m <= (a and b) or e; --concurrent signal assignments

e <= c xor d;

end example;

entity logical_ops_2 is

port (a, b: in bit_vector (0 to 3); m: out bit_vector (0 to 3));

end logical_ops_2

architecture example of logical_ops_2 is

begin

m <= a and b;

end example;

24 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Corresponding Schematic Representation

TR0115 (v1.1) June 10, 2005 25

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Relational Operators
VHDL provides the following relational operators:

= Equal to

/= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The equality operators (= and /=) are defined for all types. The ordering operators (>=, <=, >, <) are
defined for numeric types, enumerated types, and some arrays. The resulting type for all these
operators is boolean.

The simple comparisons, equal and not equal, are cheaper to implement (in terms of gates) than the
ordering operators. To illustrate, the first example below uses an equal operator and the second uses a
greater-than-or-equal-to operator. As you can see from the schematic, the second example uses more
than twice as many gates as the first.

entity relational_ops_1 is

port (a, b: in bit_vector (0 to 3); m: out boolean);

end relational_ops_1;

architecture example of relational_ops_1 is

begin

m <= a = b;
end example;

entity relational_ops_2 is

port (a, b: in integer range 0 to 3; m: out boolean);

end relational_ops_2;

architecture example of relational_ops_2 is

begin

m <= a >= b
end example;

26 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Corresponding Schematic Representation

TR0115 (v1.1) June 10, 2005 27

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Arithmetic Operators
The arithmetic operators in VHDL are defined for numeric types. These are:

+ Addition

- Subtraction

* Multiplication

/ Division

mod Modulus

rem Remainder

abs Absolute Value

** Exponentiation

While the adding operators (+, -) are fairly expensive in terms of gates, the multiplying operators (*, /,
mod, rem) are very expensive. The Synthesizer does make special optimizations, however, when the
right hand operator is a constant and an even power of 2.

The absolute (abs) operator is inexpensive to implement. The ** operator is only supported when its
arguments are constants.

The following example illustrates the logic due to an addition operator (and the use of package and
type declaration):

package example_arithmetic is

type small_int is range 0 to 7;

end example_arithmetic;

use work.example_arithmetic.all;

entity arithmetic is

port (a, b: in small_int; m: out small_int);

end arithmetic;

architecture example of arithmetic is

begin

m <= a + b;
end example;

28 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Corresponding Schematic Representation

TR0115 (v1.1) June 10, 2005 29

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Control Statements
VHDL provides the following concurrent statements for creating conditional logic:

•

•

• if

• case

conditional signal assignment

selected signal assignment

VHDL provides the following sequential statements for creating conditional logic:

Examples of concurrent control statements are conditional signal assignments:

entity control_stmts is

port (a, b, c: boolean; m: out boolean);

end control_stmts;

architecture example of control_stmts is

begin

m <= b when a else c;

end example;

All possible cases must be used for selected signal assignments. You can be certain of this by using
an others case:

entity control_stmts is

port (sel: bit_vector (0 to 1); a,b,c,d : bit; m: out bit);

end control_stmts;

architecture example of control_stmts is

begin

with sel select

m <= c when b"00",

m <= d when b"01",

m <= a when b"10",

m <= b when others;

end example;

The same functions can be implemented using sequential statements and occur inside a process
statement. The condition in an if statement must evaluate to true or false (that is, it must be a boolean
type).
The following example illustrates the if statement:

entity control_stmts is

30 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

port (a, b, c: boolean; m: out boolean);

end control_stmts;

architecture example of control_stmts is

begin

process (a, b, c)

variable n: boolean;

begin

if a then

n := b;
else

n := c;
end if;

m <= n;
end process;

end example;

Using a case statement (or selected signal assignment) will generally compile faster and produce logic
with less propagation delay than using nested if statements (or a large selected signal assignment).
The same is true in any programming language, but may be more significant in the context of logic
synthesis.
If statements and selected signal assignments are also used to infer registers.

VHDL requires that all the possible conditions be represented in the condition of a case statement. To
ensure this, use the others clause at the end of a case statement to cover any unspecified conditions.

The following example illustrates the case statement:

entity control_stmts is

port (sel: bit_vector (0 to 1); a,b,c,d : bit; m: out bit);

end control_stmts;

architecture example of control_stmts is

begin

process (sel,a,b,c,d)

begin

case sel is

when b"00" => m <= c;

when b"01" => m <= d;

when b"10" => m <= a;

when others => m <= b;

TR0115 (v1.1) June 10, 2005 31

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

end case;

end process;

end example;

Corresponding Schematic Representation

32 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Subprograms and Loops
VHDL provides the following constructs for creating replicated logic:

•

•

•

•

• function

•

generate

loop

for loop

while loop

procedure

Functions and procedures are collectively referred to as subprograms. Generate is a concurrent loop
statement. These constructs are synthesized to produce logic that is replicated once for each
subprogram call, and once for each iteration of a loop.
If possible, for loop and generate ranges should be expressed as constants. Otherwise, the logic
inside the loop may be replicated for all the possible values of loop ranges. This can be very expensive
in terms of gates.

entity loop_stmt is

port (a: bit_vector (0 to 3); m: out bit_vector (0 to 3));

end loop_stmt;

architecture example of loop_stmt is

begin

process (a)

variable b:bit;

begin

b := '1';
for i in 0 to 3 loop --don't need to declare i

b := a(3-i) and b;

m(i) <= b;
end loop;

end process;

end example;

A loop statement replicates logic, therefore, it must be possible to evaluate the number of iterations of
a loop at compile time. This requirement adds a constraint for the synthesis of a while loop and an
unconstrained loop (but not a for loop). These loops must be completed by a statement whose
execution depends only upon metalogic expressions. If, for example, a loop completion depends on a
signal (i.e. not a metalogic expression), an infinite loop will result.
Placing a report statement within the loop is a useful technique for debugging. A message will be
reported to the screen at each iteration of the loop.

TR0115 (v1.1) June 10, 2005 33

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

entity loop_stmt is

port (a: bit_vector (0 to 3); m: out bit_vector (0 to 3));

end loop_stmt;

architecture example of loop_stmt is

begin

process (a)

variable b: integer;

begin

b := 1;
while b < 7 loop

report "Loop number = " & integer'image(b);

b := b + 1;
end loop;

end process;

end example;

Loop statements may be terminated with an exit statement, and specific iterations of the loop
statement terminated with a next statement. When simulating, an exit or next may be used to speed
up simulation time. For synthesis, where each loop iteration replicates logic, there is probably no
speedup. In addition, the exit or next may synthesize logic that gates the following loop logic. This may
result in a carry-chain-like structure with a long propagation delay in the resulting hardware.
A function is always terminated by a return statement, which returns a value. A return statement may
also be used in a procedure, but it never returns a value.

entity subprograms is

port (a: bit_vector (0 to 2); m: out bit_vector (0 to 2));

end subprograms;

architecture example of subprograms is

function simple (w, x, y: bit) return bit is

begin

return (w and x) or y;

end;

begin

process (a)

begin

m(0) <= simple(a(0), a(1), a(2));

m(1) <= simple(a(2), a(0), a(1));

34 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

m(2) <= simple(a(1), a(2), a(0));
end process;

end example;

Corresponding Schematic Representation

TR0115 (v1.1) June 10, 2005 35

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Shift and Rotate Operators
VHDL provides the following shift and rotate operators:

• sll

• srl

• sla

• sra

• rol

• ror

The left operand may be a one dimensional array whose element type is either BIT or BOOLEAN, and
the right operand is of type INTEGER. If the right operand is a constant (or a metalogic expression),
these operations imply no logic.

entity sr_1 is

port (a,b,c: in bit_vector (5 downto 0);

 ctl : integer range 0 to 2**5 -1;

 w,x,y: out bit_vector (5 downto 0);

end sr_1;

architecture example of sr_1 is

begin

w <= a sll ctl; -- shift left , fill with '0'

x <= a sra ctl; -- shift right, fill with a'left [a(5)]

y <= a rol ctl; -- rotate left

end example;

Note that a negative right argument means a shift or rotate in the opposite direction. If the right
argument is non constant (not metalogic expression), and has a subtype which has a range that
includes a negative number, a bidirectional shift or rotate structure will be constructed. This can be
very expensive. For example :

function to_natural (arg : bit_vector) return natural;

function to_integer (arg : bit_vector) return integer;

a sll to_natural (bv);

a sll to_integer (bv); ------ EXPENSIVE

36 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Tri-states
There are two possible methods to describe tristates: either using the 'Z' in the type std_logic defined in
ieee.std_logic_1164, or using an assignment of NULL to turn off a driver. The first method applies to
the type std_logic only, the second method applies to any type. The first method is the one commonly
used.

library ieee;

use ieee.std_logic_1164.all;

entity tbuf2 is

port (enable : boolean;

a : std_logic_vector(0 to 4);

m : out std_logic_vector(0 to 4));

end tbuf2;

architecture example of tbuf2 is

begin

process (enable, a)

if enable then

m <= a;
else

m <= 'Z';
end if;

end process;

end;

or the equivalent concurrent statement :

architecture example2 of tbuf2 is

begin

m <= a when enable else 'Z';

end;

An internal tristate bus may be described as in the following example. Pullups may be connected to an
internal tristate bus by instantiating a pullup component.

architecture example3 of tbuf2 is

begin

m <= a0 when enable0 else 'Z';

m <= a1 when enable1 else 'Z';

TR0115 (v1.1) June 10, 2005 37

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

m <= a2 when enable2 else 'Z';

end;

The assignment of null to a signal of kind bus turns off its driver. When embedded in an if statement,
a null assignment is synthesized to a tristate buffer.

package example_bus is

subtype bundle is bit_vector (0 to 4);

end example_bus;

use work.example_bus.all;

entity tbuf is

port (enable: boolean; a: bundle; m: out bundle bus);

end tbuf;

architecture example of tbuf is

begin

process (enable, a)

begin

if enable then

m <= a;
else

m <= null;

end if;

end process;

end example;

38 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Programming Sequential Logic
Programming sequential logic in VHDL is like programming in a conventional programming language,
and unlike programming using a traditional PLD programming language. There is no register
assignment operator, and no special attributes for specifying clock, reset, etc. In VHDL you program
the behavior of a sequential logic element, such as a latch or flip-flop, as well as the behavior of more
complex sequential machines.

This section shows how to program simple sequential elements such as latches and flip-flops in VHDL.
This is extended to add the behavior of Set and Reset (synchronous and asynchronous).

Sequential Logic Behavior
The behavior of a sequential logic element can be described using a process statement (or the
equivalent procedure call, or concurrent signal assignment statement). The behavior of a sequential
logic element (latch or flip-flop) is to save a value of a signal over time. This section shows how such
behavior may be programmed.

The techniques shown here may be extended to specify Set and Reset, both synchronous and
asynchronous, as shown in later sections. There are often several ways to describe a particular
behavior, the following examples typically show two styles each, however, there is no particular 'right'
style. The choice of style is simply that which helps the programmer specify the clearest description of
the particular design.

For example, the designer may choose to copy the procedures for latches and flip-flops from the
following examples, and describe a design in terms of equations and procedure calls. Alternatively the
designer may choose to describe a design in a more behavioral form.

There are three major methods to program this register behavior: using conditional specification , using
a wait statement, or using guarded blocks. Conditional specification is the most common method.

Conditional Specification

This relies on the behavior of an IF statement, and assigning in only one condition:

if clk then

y <= a;
else

-- do nothing
end if;

This describes the behavior of a latch, if the clock is high the output (y) gets a new value, if not the
output retains its previous value. Note that if assignment had been made in both conditions, the
behavior would be that of a mux:

TR0115 (v1.1) June 10, 2005 39

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

if clk then

y <= a;
else

y <= b;
end if;

The key to specification of a latch or flip-flop is incomplete assignment using the IF statement; there is
no particular significance to any signal names used in the code fragments. Note, however, that
incomplete assignment is within the context of the whole process statement.

The latch could be described as transparent low:

if clk then

-- do nothing
else

y <= a;
end if;

Or more concisely:

ifnot clk then

y <= a;
end if;

A rising edge Flip-flop is created by making the latch edge sensitive:

if clk and clk'event then

y <= a;
end if;

In all these cases the number of registers or the width of the mux are determined by the type of the
signal "y".

Wait Statement

The second method uses a wait statement:

wait until expression;

This suspends evaluation (over time) until the expression evaluates to "true". A flip-flip may be
programmed:

wait until clk

y <= a;

It is not possible to describe latches using a wait statement.

40 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Guarded Blocks

The guard expression on a block statement can be used to specify a latch.:

lab : block (clk)

begin

q <= guarded d;

end block;

It is not possible to describe flip-flops using guarded blocks.

Latches
The following examples describe a level sensitive latch with an and function connected to its input. In
all these cases the signal "y" retains it's current value unless the clock is true:

-- A Process statement :
process (clk, a, b) -- a list of all signals used in the process

begin

if clk then

y <= a and b;

end if;

end process;

-- A Procedure declaration, creates a latch

-- when used as a concurrent procedure call
procedure my_latch (signal clk, a, b : boolean; signal y : out boolean)

begin

if clk then

y <= a and b;

end if;

end;

-- an example of two such calls:

label_1: my_latch (clock, input1, input2, outputA);

label_2: my_latch (clock, input1, input2, outputB);

-- A concurrent conditional signal assignment,

-- note that "y" is both used and driven
y <= a and b when clk else y;

y <= a and b when clk;

TR0115 (v1.1) June 10, 2005 41

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Flip-Flops
The following examples describe an edge sensitive flip-flop with an and function connected to its input.
In all these cases the signal "y" retains it's current value unless the clock is changing :

-- A Process statement :
process (clk) -- a list of all signals that result in propagation delay

begin

if clk and clk'event then -- clock rising

y <= a and b;

end if;

end process;

-- A Process statement containing a wait statement:
process -- No list of all signals used in the process

begin

wait until not clk; -- clock falling

y <= a and b;

end process;

-- A Procedure declaration, this creates a flip-flop

-- when used as a concurrent procedure call
procedure my_ff (signal clk, a, b : boolean; signal y : out boolean)

begin

if not clk and clk'event then -- clock falling

y <= a and b;

end if;

end;

-- A concurrent conditional signal assignment,

-- note that "y" is both used and driven
y <= a and b when clk and clk 'event else y;

y <= a and b when clk and clk 'event ; -- the last else is not required

It is sometimes clearer to write a function to detect a rising edge :

function rising_edge (signal s : bit) return boolean is

begin

return s = '1' and s'event;

end;

42 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Using this function, a D flip flop can be written as :

q <= d when rising_edge(clk);

Gated Clocks and Clock Enable
The examples in this section assume the clock is a simple signal. In principle, any complex boolean
expression could be used to specify clocking. However, the use of a complex expression implies a
gated clock.

As with any kind of hardware design, there is a risk that gated clocks may cause glitches in the register
clock, and hence produce unreliable hardware. You need to be aware of the constraints of the target
hardware and, as a general rule, use only simple logic in the if expression.

It is possible to specify a gated clock with a statement such as:

if clk1 and ena then

-- register assignments here
end if;

which implies a logical AND in the clock line.
To specify a clock enable use nested if statements:

if clk1 then

if ena then

-- register assignments here
end if;

end if;

This will connect 'ena' to the register clock enable if the clock enable compile option is used. If the
clock enable option is not used then the data path will be gated with 'ena'. In neither case will 'ena' gate
the 'clk1' line.

Synchronous Set or Reset
To add the behavior of synchronous set or reset, simply add a conditional assignment of a constant
immediately inside the clock specification.

-- Set:
process (clk)

begin

if clk and clk'event then -- clock rising

if set then

y <= true; -- y is type boolean
else

y <= a and b;

end if;

TR0115 (v1.1) June 10, 2005 43

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

end if;

end process;

-- 29 bits reset , 3 bits set by init
process

begin

wait until clk -- clock rising

if init then

y <= 7; -- y is type integer
else

y <= a + b;
end if;

end process;

Asynchronous Set or Reset
To describe the behavior of asynchronous set or reset the initialization is no longer within the control of
the clock. Simply add a conditional assignment of a constant immediately outside the clock
specification.

-- Reset using a concurrent statement statement:
y <= false when reset else a when clk and clk'event else y;

-- and using the function rising_edge described earlier :
y <= false when reset else a when rising_edge(clk);

-- Reset using sequential statements:
process (clk, reset)

begin

if reset then

q <= false; -- y is type boolean
else

if clk and clk'event then -- clock rising

q <= d;
end if;

end if;

end process;

44 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

procedure ff_async_set (signal clk, a, set: boolean;

signal q : out boolean)

begin

if set then

q <= true;
elsif clk and clk'event then -- clock rising

q <= a; -- D input
end if;

end;

Asynchronous Set and Reset
To describe the behavior of both asynchronous set and reset, simply add a second conditional
assignment of a constant immediately outside the clock specification.

-- Reset and Set using a concurrent statement
q <= false when reset else

true when preset else

d when clk and clk'event;

-- Reset and Set using a sequential statements
process (clk, reset, preset)

begin

if reset then

q <= false; -- q is type boolean
elsif preset then

q <= true
else

if clk and clk'event then -- clock rising

q <= d;
end if;

end if;

end process;

TR0115 (v1.1) June 10, 2005 45

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Asynchronous Load
To describe the behavior of asynchronous load, replace the constant used for set or reset with a signal
or an expression. Asynchronous load is actually implemented using both flip flop asynchronous preset
and flip flop asynchronous reset.

-- Load using a concurrent statement
q <= load_data when load_ctl = '1' else d when rising_edge(clk);

-- Load using a sequential statement
process (clk, load_ctl,load_data)

begin

if load_ctl = '1' then

q <= load_data;
elsif rising_edge(clk) then

q <= d;
end if;

end process;

Register Inference Rules
Storage elements are inferred by the use of the if statement. Register control signals are specified with
the expression in an if statement, the control signal function is specified by the assignments (or lack of
assignments) in the branches of the if statement.

if if expression then

then branch
else

else branch
end if;

Multiple nested if statements are combined to specify multiple register control signals. The execution of
the first if statement may not be conditional on any other statements, unless the condition is a
metalogic expression.

The scope of register inference is a single concurrent statement.

Reset/Preset
One branch of the if statement assigns a constant (metalogic expression) to the register. The other
branch assigns input to the register.

Clock
One branch of the if statement assigns to the register, the other branch does not assign to the register
(or assigns the register output). A register is inferred because its value is incompletely specified.

46 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Clock Enable
One branch of the if statement assigns to the register input in the clock expression, the other branch
does not assign to the register. Must occur immediately within the clock if statement.

Inference priority
Control signals are inferred with the following priority, listed with the highest priority first (not all
combinations are supported) :

•

• Clock

•

•

Asynchronous reset / preset

Clock Enable

Synchronous reset

TR0115 (v1.1) June 10, 2005 47

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Programming Finite State Machines
Finite state machines (FSMs) can be classified as Moore or Mealy machines. In a Moore machine, the
output is a function of the current state only; thus can change only on a clock edge. Whereas a Mealy
machine output is a function of the current state and current inputs, and may change when any input
changes.

This section shows the relationship between these machines and VHDL code. Each example illustrates
a single machine. This is not a constraint, just a simplification. If there were multiple machines, they
could have different clocks. In this case, synchronization would be the responsibility of the designer.

Feedback Mechanisms
There are two ways to create feedback - using signals and using variables. With the addition of
feedback you can build state machines.

It is possible to describe both combinational and sequential (registered) feedback systems. When using
combinational feedback to create asynchronous state machines it is often helpful, but not required, to
mark the feedback signal with the Synthesizer user attribute critical.

Feedback on signals
architecture example of some_entity is

signal b: bit;

function rising_edge (signal s : bit) return boolean is

begin

return s = '1' and s'event;

end;

begin

process (clk, reset)

begin

if reset = '1' then

c <= '0';
elsif rising_edge(clk)

c <= b;
end if;

end process;

process (a, c) -- a combinational process

begin

b <= a and c;

end process;

end example;

48 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

A more concise version of the same feedback is shown in the following example:

use work.my_functions.all; -- package containing

 -- user function rising_edge
architecture example of some_entity is

begin

process(clk,reset)

begin

if reset = '1' then

c <= '0';
elsif rising_edge(clk)

c <= a and c;

end if;

end process;

end example;

Corresponding Schematic Representation

TR0115 (v1.1) June 10, 2005 49

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Feedback on variables
Variables exist within a process, and processes suspend and reactivate. If a variable passes a value
from the end of a process back to the beginning, feedback is implied. In other words, feedback is
created when variables are used (placed on the right hand side of an expression, in an if statement,
etc.) before they are assigned (placed on the left hand side of an expression).
Feedback paths must contain registers, so you need to insert a wait statement.

process

variable v: bit;

begin

wait until clk = '1';

if reset = '1' then

v <= '0';
else

v := not v; --v is used before it is assigned

c <= v;
end if;

end process;

A flip-flop is inserted in the feedback path because of the wait statement. This also specifies
registered output on signal a.

If a variable is declared inside a function or procedure, the variable exists only within the scope of the
subprogram. Since a wait statement can only be placed within a process statement (a Synthesizer
constraint), variables inside subprograms never persist over time and never specify registers.

50 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Corresponding Schematic Representation

Moore Machine
In the following architecture, F1 and F2 are combinational logic functions. A simple implementation
maps each block to a VHDL process.

entity system is

port (clock: boolean; a: some_type;.d: out some_type);

end system;

architecture moore1 of system is

signal b, c: some_type;

begin

TR0115 (v1.1) June 10, 2005 51

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

process (a, c)

begin

b <= F1(a, c);
end process;

process (c)

begin

d <= F2(c);
end process;

process

begin

wait until clock;

c <= b;
end process;

end moore1;

A more compact description of this architecture could be written as follows:

architecture moore2 of system is

signal c: some_type;

begin

process (c) -- combinational logic

begin

d <= F2(c);
end process;

process -- sequential logic

begin

wait until clock;

c <= F1(a, c);
end process;

end moore2;

In fact, a Moore Machine can often be specified in one process.

Output registers
If the system timing requires no logic between the registers and the output (the shortest output
propagation delay is desired), the following architecture could be used:

52 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

architecture moore3 of system is

begin

process

begin

wait until clock;

d <= F(a,d)
end process;

end moore3;

Input Registers
If the system timing requires no logic between the registers and the input (if a short setup time is
desired), the following architecture could be used:

architecture moore4 of system is

signal a1, d1 : some_type;

begin

process

TR0115 (v1.1) June 10, 2005 53

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

begin

wait until clock;

a1 <= a;

d1 <= d;
end process;

process (a1, d1)

begin

d <= F(a1,d1)
end process;

end moore4;

Mealy Machine
A Mealy Machine always requires two processes, since its timing is a function of both the clock and
data inputs.

architecture mealy of system is

signal c: some_type;

begin

process (a, c) -- combinational logic

begin

d <= F2(a, c);
end process;

process -- sequential logic

begin

wait until clock;

c <= F1(a, c);
end process;

end mealy;

54 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Synthesis of VHDL Types
In VHDL, types are used for type-checking and overload resolution. For logic design, each type
declaration also defines the encoding and number of wires to be produced. For subtypes, checking and
overloading use the base type of the subtype.

Each subtype declaration defines a subset of its type and can specify the number or wires, and
possibly the encoding scheme.

During compilation by the Synthesizer, ports with types that compile to multiple wires are renamed by
appending "_n", where n is an incremented integer starting from zero.

Enumerated Types
As a default, enumerated types use binary encoding. Elements are assigned numeric values from left
to right, and the value of the leftmost element is zero.

The number of wires will be the smallest possible n, where number of elements <= 2**n.
The type bit is synthesized to one wire.

The type character is synthesized to eight wires.

Don't Cares
Unused encodings are implicitly compiled as "don't care" conditions; these allow the Synthesizer to
perform additional logic optimizations. Subtypes use the element encodings of their base, and types
define additional "don't care" conditions. Don’t care may be explicitly specified using 'enum_encoding'
as described in the next section.

For example:

The declaration Is synthesized as

type direction is (left, right, up, down); Two wires

type cpu_op is (execute, load, store); Two wires;

 the encoding of

11 is a "don't care"

subtype mem_op is cpu_op range load to store; Two wires;

the encodings of

00 and 11 are "don't cares"

In the example below, logic will be generated with inputs 11 and 00 as "don’t care" conditions for
evaluating output_var.

variable operation: mem_op;
...
case operation is

load => output_var :=...;
store => output_var :=...;

end case;

TR0115 (v1.1) June 10, 2005 55

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

User Defined Encoding
Users may redefine the encoding of an enumerated type using the attribute 'enum_encoding'. For
example, cpu_op might be redefined with one hot encoding:

attribute enum_encoding of enum_t : type is "001 010 100";

-- or ... : type is "one hot";

-- or ... : type is "1-hot";

or kept as two bits with a different encoding:

attribute enum_encoding of enum_t : type is "01 10 11";

The definition of the encoding may contain a string consisting of '0' '1' 'Z' 'M' or '-', delimited by ' ' (white
space). The encoding of each enumerated element must have the same number of characters. Each
encoding should be unique. The encoding 'Z' represents a high impedance, the encoding '-' represents
a don’t care, and the encoding 'M' represents a metalogic value. In addition there are two predefined
encodings “one hot” and “gray”.

Users must be aware that the enum_encoding attribute allows the user to redefine the semantics of an
enumerated type. In certain cases this may results in synthesis creating logic that does not have the
same behavior as the original VHDL source! In general, this is not a big problem; it is, however, a pitfall
to be aware of, as explained below.

Enumerated types in programming languages are defined as having unique and ascending values. In
order to maintain behavior the enum_encoding specified by the user should be unique and ascending.
Non-unique encoding should be avoided. For non-ascending encoding, the user must overload the
ordering operators < <= > >= for the re-encoded type of each ordering operator used.

Std_logic_1164
The library 'ieee' contains the package 'std_logic_1164'; this in turn declares an enumerated type
'std_ulogic':

type std_ulogic is ('U', -- Uninitialized

'X', -- Forcing Unknown

'0', -- Forcing 0

'1', -- Forcing 1

'Z', -- High Impedance

'W', -- Weak Unknown

'L', -- Weak 0

'H', -- Weak 1

'-' -- Don't care

);

This type and its derivatives 'std_logic' and 'std_logic_vector' are often used in VHDL simulation. This
allows the user to maintain information about the simulation model itself as well as describe the design.
The values 'U' 'X' 'W' and '-' are referred to as metalogical values because they represent the state of a
model rather than the logic of a design.

56 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

An object of type std_logic is encoded as one wire because the library ieee (supplied with the
Synthesizer) contains the encoding definition:

attribute enum_encoding of std_ulogic : type is "M M 0 1 Z M 0 1 -";

The attribute defines the semantics for each element:

'0' 'L' Logic value 0

'1' 'H' Logic value 1

'Z' Logic value tristate

'U' 'X' 'W' Metalogic value

'-' Don't care value

The 'U' 'X' 'W' and '-' values have the same synthesis semantics -- except as arguments to the IEEE
Standard 1076.3 function STD_MATCH. The semantics are defined in 1076.3 and allow don’t care
logic optimization if evaluation results in assigning a metalogic value or don’t care value.

These semantics are designed for compatibility with simulation; if an 'X' propagates in simulation, there
may be don’t care optimization. Note that some operations don't propagate unknowns:

•

•

•

•

"=" with one metalogic argument is always false.

"/=" with one metalogic argument is always true.

an ordering operator with a metalogic argument is illegal.

a case choice containing metalogic is always ignored.

The function ieee.numeric_std.std_match provides wildcard matching for the don’t care value.

One Hot Encoding
User defined encoding may be used to specify one hot encoding. For instance, the enumerated type
'state_type' (below) could be redefined as one hot simply by changing the enum_encoding attribute.

type state_type is (st0,st1,st2,st3,st4,st5,st6,st7,st8,

st9,st10,st11,st12,st13,st14,st15);

There are two possible forms:

-- either
attribute enum_encoding of state_type : type is "one hot";

-- or
attribute enum_encoding of state_type : type is

"0000000000000001 " & --st0

"0000000000000010 " & --st1

"0000000000000100 " &

"0000000000001000 " &

"0000000000010000 " &

TR0115 (v1.1) June 10, 2005 57

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

"0000000000100000 " &

"0000000001000000 " &

"0000000010000000 " &

"0000000100000000 " &

"0000001000000000 " &

"0000010000000000 " &

"0000100000000000 " &

"0001000000000000 " &

"0010000000000000 " &

"0100000000000000 " &

"1000000000000000"; --st15

The encoding is specified in ascending order so the ordering operators ("<" "<=" ">" ">=") function as
expected, and so writing additional functions to define these operations is not needed. Don’t care
conditions are handled automatically and transparently to the user.

An alternative method to describe one hot encoding is to use arrays of 'std_logic' (or even 'bit'). This
method may be slower to compile and require additional explicit don’t care specification. The
recommended style is to use enumerated types and enum_encoding.

Gray Encoding
User defined encoding may be used to specify a predefined gray encoding. For example:

type state_type is (st0,st1,st2,st3,st4,st5,st6,st7,st8,

st9,st10,st11,st12,st13,st14,st15);
attribute enum_encoding of state_type : type is "gray";

-- this is the same as :
attribute enum_encoding of state_type : type is

"0000 " & --st0

"0001 " & --st1

"0011 " & --st2

"0010 " & --st3

"0110 " &

"0111 " &

"0101 " &

"0100 " &

"1100 " &

"1101 " &

"1111 " &

58 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

"1110 " &

"1010 " &

"1011 " &

"1001 " &

"1000"; --st15

Because of the nature of a gray code, the encoding is NOT specified in ascending order so the
ordering operators ("<" "<=" ">" ">=") do NOT function as expected. For example the expression st2 <
st3 should be true, but the encoded expression “0011” < “0010” is false. So writing additional functions
to define ordering operators for state_type is required if these operations are used.

Numeric Types
Numeric types consist of integer, floating point, and physical types. Two encoding schemes are used
by the Synthesizer for numeric types:

•

•

Numeric types and subtypes that contain a negative number in their range definition are encoded
as 2's complement numbers.

Numeric types and subtypes that contain only positive numbers are encoded as binary numbers.

The number of wires that are synthesized depends on the value in its subtype declaration that has the
largest magnitude. The smallest magnitude is assumed to be zero for numeric types.

Floating point numbers are constrained to have the same set of possible values as integers - even
though they can be represented using floating point format with a positive exponent.

Numeric types and subtypes are synthesized as follows:

The declaration Is synthesized as

type int0 is range 0 to 100 A binary encoding having 7 bits

type int1 is range 10 to 100 A binary encoding having 7 bits

type int2 is range -1 to 100 A 2's complement encoding having 8 bits (including sign)

subtype int3 is int2 range 0 to 7 A binary encoding having 3 bits

Warning - take great care when using signed scalar numbers. These are encoded as twos-
complement, which is a fixed width encoding.

This can be a problem when mixing objects that have different signed subtypes - each will have
different widths and result in unexpected behavior. This is not a problem during simulation since these
objects are always encoded as a fixed , 32 bit, width.

It is probably safest to use unsigned scalar types. Another option is to use an array of bits to explicitly
specify the width; this is the approach taken by the Synopsys and IEEE 1076.3 synthesis package.

If the type of the object to which the result is assigned has more bits than either of the operands, the
result of the numeric operations is automatically sign extended or zero extended. Sequential encoded
types are zero extended , and two's compliment numbers are sign extended.

TR0115 (v1.1) June 10, 2005 59

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

If the type of the object to which the result is assigned has fewer bits than either of the operands, the
result of the numeric operations is truncated.

If a numeric operation has a result that is larger than either of the operands, the new size is evaluated
before the above rules are applied.

For example, a "+" generates a carry that will be truncated , used , or sign (or zero) extended,
according to the type of the object to which the result is assigned.

type short is integer 0 to 255;

subtype shorter is short range 0 to 31;

subtype shortest is short range 0 to 15;

signal op1,op2,res1 : shortest;

signal res2 : shorter;

signal res3 : short

begin

res1 <= op1 + op2; -- truncate carry

res2 <= op1 + op2; -- use carry

res3 <= op1 + op2; -- use carry and zero extend

Note that if shorter had been declared as:

subtype shorter is short range 0 to 16;

the encoding of integers rounded up to the nearest power of two would have the same result.

Arrays and Records
Composite types (arrays and records) are treated as collections of their elements. Subtypes of
composite types are treated as collections of the elements of the subtype only.

60 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Managing Large Designs
Many of the VHDL design descriptions in this guide consist of a single entity (the design I/O) and its
architecture (the design functionality). This view is sufficient for many users, but as your designs get
larger you will also want to consider the issues of partitioning and design management.

This section introduces some additional VHDL constructs for partitioning and sharing code modules.
These are block, component, package, and library statements. Of these, only component has
special meaning in the context of synthesis, so you can refer to any of the standard VHDL texts for
detailed descriptions.

Using Hierarchy
A VHDL entity can have multiple architectures. A particular entity/architecture pair (referred to as a
design entity) can also be referenced from another architecture as a VHDL component. Instantiating
components within another design provides a mechanism for integrating partitioned designs or for
using other designs in the current design. You can manage the relationship between a component
declaration and various design entities by using configuration specifications. Because of default
configurations, such specifications are not required.
During synthesis, a component is also used to tell the Logic Optimizer about the hierarchy of your
design. Using components in a large design will result in a design that optimizes faster and produces
more efficient results. This is because using components adds the designer's knowledge of the
hierarchy of a design to the description, this in turn is used by the compiler to specify the domain of the
Logic Optimizer. Hierarchy is also useful in the debugging of large designs, in reusing design units. For
VHDL synthesis there are some additional semantics of hierarchy. It is used to specify logic optimize
granularity, hierarchical compiles, and silicon specific components.

Controlling the logic optimize granularity
The domain of the Synthesizer's Logic Optimizer is an architecture, which is the amount of logic the
Optimizer will optimize at one time. Using hierarchy to reflect the structure of your design will allow
efficient use of the Optimizer.

Specifying an architecture containing a large amount of logic may take a long time to optimize.
Optimizing many small architectures can be quick but may not give satisfactory results if the Optimizer
doesn't see enough of the design at one time.

There is no right answer, but keep in mind:

•

•

•

An architecture should typically contain logic that synthesizes between 500 and 5000 gates.

There is no lower bound, an architecture could simply specify connectivity and imply no gates.

You can cause a Child to be optimized as part of each of its Parents by applying the synthesis
attribute "ungroup" to the component declaration.

Hierarchical compile
It is not necessary (and possibly not even a good idea)to compile a whole design in one pass. Large
designs are commonly compiled in multiple partitions and the resulting netlists linked together. Since
you can compile more than one entity/architecture in one pass, compile granularity is distinct from
optimize granularity.

TR0115 (v1.1) June 10, 2005 61

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

From the point of view of the VHDL code, you don't have to do anything special for hierarchical compile
(although there are some constraints imposed by netlist semantics). Simply compile the parent without
the Child :

---Parent
library ieee;

use ieee.std_logic_1164.all;

entity Parent is

port (a : std_logic_vector(7 downto 5);

v : out std_logic_vector(1 to 3));

end Parent;

architecture behavior of Parent is

-- component declaration , unbound
component Child

port (I : std_logic_vector(2 downto 0) ;

O : out std_logic_vector(0 to 2));

end component;

begin

-- component instantiation
u0 : Child port map (a,v);

end;

This results in a netlist containing an instance of Child but no definition of Child. The Child entity is then
compiled and the resulting netlist linked by a downstream tool. In practice many cases are possible, a
Parent may have a Child_1 defined and compiled at this time, and Child_2 compiled at a different time.

Silicon specific components
It is also possible that the Child is never defined to the synthesis tool, but defined by a downstream
tool. You can use this to specify primitives in the target hardware. The primitives could be as simple as
I/O buffers, or clock buffers. They might also be a pre-defined component such as a special counter,
or an XBLOX or LPM macrocell. For simulation using third party tools prior to simulation you may need
simulation models of such components. These models should not be visible to the synthesis compiler.

---Parent
library ieee;

use ieee.std_logic_1164.all;

entity Parent is

port (a : std_logic_vector(7 downto 5);

v : out std_logic_vector(1 to 3));

end Parent;

architecture behavior of Parent is

62 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

-- component declaration , unbound
component IN_BUF_3

port (I : std_logic_vector(2 downto 0) ;

O : out std_logic_vector(0 to 2));

end component;

component OUT_BUF_3

port (I : std_logic_vector(2 downto 0) ;

O : out std_logic_vector(0 to 2));

end component;

signal x : std_logic_vector(2 downto 0);

--you may need to add this attribute , see the text below.
attribute macrocell : Boolean;

attribute macrocell of IN_BUF_3, OUT_BUF_3 : component is true;

begin

-- component instantiations
u0 : IN_BUF_3 port map (a,x);

u2 : OUT_BUF_3 port map (x,v);

end;

If the ports of your component have a type corresponding to multiple bits, you should add the macrocell
attribute as shown. Adding the attribute is not required if the component has only single bit ports (such
as those with type std_logic). The macrocell attribute changes the naming conventions for expanding
component bus names.

Blocks
Designs can be partitioned using block statements or component statements. These constructs have
the same meaning as blocks and components in schematic capture.
Block statements can be used to partition concurrent statements, as in the following example:

architecture partitioned of some_design is
begin

a_block: block
begin
-- concurrent statements here
end block;

another: block
begin
-- concurrent statements here
end block;

end partitioned;

TR0115 (v1.1) June 10, 2005 63

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Direct Instantiation
Each element of the design hierarchy (each entity architecture combination) may be directly
instantiated within another. For example :

-- The design leaf
entity child is

port (a, b: bit; c : out bit);

end child;

architecture behavior of child is

begin

c <= a and b;

end behavior;

-- The design root
entity parent is

port (a, b: bit; c: out bit);

end parent;

architecture family of parent is

signal w, r: bit;

use work.all;

begin

huey: entity child port map (a, b, w); --direct instantiations

luey: entity child port map (a, w, r);

duey: entity child port map (a, r, c);

end family;

Components and Configurations
VHDL allows any number of entity-architecture pairs, which are referred to as design entities. These
design entities can be referenced from another architecture as components. The mapping of design
entities is managed using a configuration specification, which associates particular component
instances with a specified design entity.
The first example contains three component instantiations:

-- The component definition
entity goose is

port (a, b: bit; c : out bit);

end goose;

64 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

architecture snow_goose of goose is

begin

c <= a and b;

end snow_goose;

-- The design definition
entity flock is

port (a, b: bit; c: out bit);

end flock;

architecture three_geese of flock is

signal w, r: bit;

component goose --component declaration

port (a, b: bit; c: out bit);

end component;

begin

one: goose port map (a, b, w); --component instantiations

two: goose port map (a, w, r);

three: goose port map (a, r, c);

end three_geese;

In this example, the architecture three_geese contains a declaration of a component goose and three
instantiations of that component, but no definition of the component's configuration. By default, VHDL
uses an entity of the same name as the component (in this case goose), which is defined at the
beginning of the design.
You can override the default component definition by using a configuration specification. For
example, a configuration specification could have been used to describe another architecture of entity
flock, as follows:

architecture three_birds of flock is
signal w, r: bit;
component bird --component declaration

port (a, b: bit; c: out bit);
end component;
for all: bird use entity work.goose; --configuration specification

begin
one: bird port map (a, b, w); --component instantiations
two: bird port map (a, w, r);
three: bird port map (a, r, c);

end three_birds;

TR0115 (v1.1) June 10, 2005 65

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

In a configuration specification, instantiation labels (in this example, "one," "two," and "three") can be
used instead of the reserved word all to indicate that the configuration applies to particular instances of
the specified component. Configurations have many other capabilities that are described in the
standard VHDL texts.

If a design contains multiple design entities, you need to specify which one is used as the root (top
level) of the design. The default is the last entity analyzed. You can override this default by using the
elaborate compile option.

Package Declarations and Use Clauses
The package declaration can be used to declare common types and subprograms. For example:

package example_package is

type shared_enum is (first, second, third, last);

end example_package;

In order for the contents of a package to be visible from inside an entity or an architecture, you need to
place a use clause before the entity declaration. For example:

use work.example_package.all;

entity design_io is

...
end design_io;

Placing a use clause before an entity causes the contents of the specified package to be visible to that
entity and its architecture(s), but nowhere else.
The work library is the default name of the current library. For now, just treat it as template and always
include it in the use clause.

Since the VHDL visibility rules ignore file boundaries, the package might be in one file, the use clause
and entity declaration in another, and the architecture in a third file. VHDL requires that these units
have already been analyzed when they are referenced in the code, therefore the order in which the
files are specified to the compiler is important. It is not required that design units be placed in different
files.
To define common subprograms, a package body is used. For information on this construct, and other
applications of the use clause, refer to the standard VHDL texts.

VHDL Design Libraries
In VHDL, a design library is defined as "an implementation-dependent storage facility for previously
analyzed design units". The library "work" is a special case, as it is an alias for the current library.

A library is simply an external VHDL file or files, so files specified directly to the compiler are in the
library "work". Files specified through a vhdl library statement (by direct association or alias
association) are contained in the "work" library Some files stored in the installation directory are also
saved as pre-analyzed binary ".mm0" files,
Libraries are made visible within the source code by the library statement. To make the library units
within the library visible outside the library, it is necessary to add use statements:

66 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

library stuff;

use stuff.all; -- Makes visible all design units in stuff.

use useless.all; -- Makes all declarations in the design unit

named useless visible.

or enter the following statement for each design unit:

use stuff.useless.all;

Direct association
A library is defined as a file of the same name. The library statement above will cause the Synthesizer
to read a file named "stuff.vhd". The compiler searches for the file in the current directory, then in the
installation directory. An eight-character limit is imposed on library names by some versions of the DOS
operating system.

Synthesizer VHDL Libraries
The library files supplied with the Synthesizer contain the following packages :

STD.VHD IEEE 1076 package 'standard'

IEEE.VHD IEEE 1164 package 'std_logic_1164'

NUM_BIT.MM0 IEEE 1076.3 package 'numeric_bit'

NUM_STD.MM0 IEEE 1076.3 package 'numeric_std'

METAMOR.VHD Synthesis specific package 'attributes'
Synthesis specific package 'array_arith'

VLBIT.VHD Viewlogic package 'pack1076'

SYNOPSYS.VHD Synopsys package 'std_logic_arith'
Synopsys package 'std_logic_unsigned'
Synopsys package 'std_logic_signed'
Synopsys package 'std_logic_misc'

XBLOX.VHD package 'macros'

LPM.VHD package 'macros200'
package 'macros201'

Documentation for these packages is included within the VHDL source files, short descriptions follow.
The XBLOX and LPM libraries may only be used in association with XBLOX or LPM compilers, and
may not be included in your version of the product.

std.standard
The VHDL 1076 package, declares bit, bit_vector, boolean, etc.

ieee.std_logic_1164
The IEEE standard 1164 package, declares std_logic, std_logic_vector, rising_edge(), etc.

TR0115 (v1.1) June 10, 2005 67

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

ieee.numeric_bit
This package is part of the IEEE 1076.3 Draft Standard VHDL Synthesis Package. The package is
supplied in binary compiled form. The source code is available from the IEEE as part of the Standard.

This package defines numeric types and arithmetic functions for use with synthesis tools. Two numeric
types are defined:

•

•

•

•

UNSIGNED: represents an UNSIGNED number in vector form

SIGNED: represents a SIGNED number in vector form

The base element type is type BIT. The leftmost bit is treated as the most significant bit. Signed vectors
are represented in two's complement form. This package contains overloaded arithmetic operators on
the SIGNED and UNSIGNED types. The package also contains useful type conversions functions,
clock detection functions, and other utility functions.

This package is in the binary file num_bit.mm0. To use this package the library alias for IEEE should
be set to num_bit.vhd. (IEEE <path>\num_bit.vhd)

See the topic 'VHDL Design Libraries' (in the Links section below) for information on alias association.

ieee.numeric_std
This package is part of IEEE 1076.3 Draft Standard VHDL Synthesis Package. The package is
supplied in binary compiled form. The source code is available from the IEEE as part of the Standard.

This package defines numeric types and arithmetic functions for use with synthesis tools. Two numeric
types are defined:

UNSIGNED: represents an UNSIGNED number in vector form

SIGNED: represents a SIGNED number in vector form

The base element type is type STD_LOGIC. The leftmost bit is treated as the most significant bit.
Signed vectors are represented in two's complement form. This package contains overloaded
arithmetic operators on the SIGNED and UNSIGNED types. The package also contains useful type
conversions functions.

This package is in the binary file num_std.mm0, the package depends upon IEEE.STD_LOGIC_1164.
To use this package the library alias for IEEE should be set to include ieee.vhd and num_std.vhd. (
IEEE <path>\ieee.vhd <path>\num_std.vhd)

metamor.attributes
Declarations of the synthesis specific attributes.

metamor.array_arith
This package contains subprograms that allow arithmetic operations on arrays for optimizing third party
synthesis packages. These functions are intended to be hidden from the end user within other
functions contained in a third party package. There would be two implementations of the package
body, one optimized for synthesis (uses these functions), and the other optimized for simulation.

The documentation with the file describes the list of assumptions and example usage. More examples
of the use of these functions can be found in vlbit.vhd and synopsys.vhd.

68 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

vlbit.pack1076
This package contains type and subprogram declarations for Viewlogic's built-in type conversion and
bus resolution functions. The package has been optimized for use with the Synthesizer's compiler. Vlbit
based designs may (or may not) require some modification; this is described below.

Vlbit designs may make use of register inference conventions that are different from those used by the
Synthesizer. The case to look for is preset/reset, which is specified in a wait statement along with the
clock. Using the Synthesizer, this will result in a gated clock, which is probably not what you want. You
should replace the wait statement with the if-then style of register inference.

You should validate using simulation and also check to see that the number of registers used and their
type (flip-flop/latch, preset/reset, sync/async) are what you expected. The compiler reports register
types, and number of instances in the log file.

ieee.std_logic_arith, ieee.std_logic_unsigned, ieee.std_logic_signed, ieee.std_logic_misc
These packages are versions of the Synopsys packages that have been optimized for use with the
VHDL Synthesizer's compiler. When importing designs you should validate using simulation and also
check the number of registers used and their type (flip-flop/latch, preset/reset, sync/async) to ensure
they are what you expected. The compiler reports register types, and number of instances in the log
file.

These packages are in the file synopsys.vhd and are usually placed in a library named IEEE (although
they are not an IEEE standard). To use these packages the library alias for IEEE should be set to
include ieee.vhd and synopsys.vhd.

xblox.macros
This package contains component declarations for Xblox macrocells, for use with the Xblox compiler.
These components may be instantiated in your design in the usual way. For example:

u1 : compare port map (d1,d2, a_ne_b => x);

The package is based on ieee.std_logic_1164.std_logic. If you wish to use datatypes other than
std_logic, then create your own package by copying from this one. There are no hidden magic words,
except that the port and generic names must match the Xblox specification. All components that are
Xblox macrocells must have the synthesis attribute 'macrocell' set to 'true'.

lpm.macros200, lpm.macros201
This package contains component declarations for Lpm macrocells, for use with an LPM compiler.
These components may be instantiated in your design in the usual way. For example:

u1 : lpm_compare generic map (4,"unsigned")

port map (d1,d2, aeb => x);

The package is based on ieee.std_logic_1164.std_logic. If you wish to use datatypes other than
std_logic, then create your own package by copying from this one. There are no hidden magic words,
except that the port and generic names must match the LPM specification. All components that are
LPM macrocells must have the synthesis attribute 'macrocell' set to 'true'.

LPM requires instance specific Properties. These are specified by using VHDL generics. The
component declarations include these generic declarations. Instance specific values are specified with
a generic map. Some examples are :

TR0115 (v1.1) June 10, 2005 69

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

signal d1 : std_logic_vector(3 downto 0)

signal d2 : std_logic_vector(0 to 3)

signal d3,d4 : std_logic_vector(7 downto 6)

....
u1 : lpm_compare generic map (4) --default is "signed"

port map (d1,d2, aeb => x);

u2 : lpm_compare generic map (2,"unsigned")

port map (d3,d4, y1, y2); --agb not used

u3 : lpm_compare generic map

(representation =>"unsigned", width => 2)
port map (d3,d4, z); -- alb is used

Hierarchical Compilation
The whole design need not be recompiled when only a single architecture changes. The VHDL
Synthesizer supports this feature through hierarchical compilation. The granularity of hierarchical
compilation is the component.
This feature requires that the user maintain and link the resulting elements of the hierarchy
(components) external to the Synthesizer. The user is also responsible for checking the root and leaf
interfaces for consistentcy. This feature is only available with output formats that support hierarchy.
If a component has no entity visible when the design root is compiled, no entity is bound to that
component. This results in a hierarchy instantiation in the output file with no definition for that leaf of the
hierarchy. The leaf entity that was not visible during the first compilation is generated by a second
compilation using the Synthesizer.

Because the binding between root and leaf is external to the VHDL compiler (the user links these
together) certain VHDL features are not available at the hierarchical compilation boundary. The user is
responsible to ensure that component and entity port definitions match exactly. Some things to watch
out for include:

•

•

•

•

•

•

•

•

Leaf entity and component names must be the same.

Leaf entity and component port names and subtypes must be the same.

Leaf instance may not have a 'generic map'.

Leaf may not have a port that has a type that is unconstrained.

Ports that have an array type must have matching directions in the entity and component
declaration.

Leaf component declaration may not contain a port map (the component instantiation may still
contain a port map)

Root and leaf must not reference a signal declared outside of their scope (e.g. a signal declared in
a package).

Configurations are not supported at (or across !!) the hierarchical compilation boundary.

70 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Logic and Metalogic
A HDL design description consists of code to serve three distinct functions.
Logic expressions - logic in the hardware implementation. The value of a logic expression changes
over time. In VHDL terms its value depends upon a signal.
Metalogic expressions - logic about (not in) the hardware implementation. The value of a metalogic
expression does not change over time. In VHDL terms its value must not depend upon a signal.
Metalogic values - logic value extensions for tools such as simulators or synthesis tools. Metalogic
values describe the state of the design model.

Metalogic expressions are important in synthesis as they imply no hardware. This allows them to
compile faster, and generally produces more efficient synthesis results. In addition, some constraints
on VHDL for synthesis depend upon certain expressions being metalogic expressions (i.e., they must
not vary over time).

Metalogic values are tool specific values (specific to simulators or synthesis tools) added to the design
description. An understanding of the required values may be important when porting VHDL code from
say a simulator to a synthesis tool(in addition to the additional constraints of EE design !).

In a classic PLD programming language, design description consists of logic expressions, constant
metalogic expressions, and perhaps 'X' (mapped to 0 or don’t care) as a metalogic value.

Logic expressions
Logic expressions are familiar to hardware engineers, any classic PLD programming language consists
of logic expressions. In VHDL examples of logic expressions might be :

(a and b) or c

d + e

If a,b,c,d, and e are signals.

Metalogic expression
An example of a simple metalogic expression is one using constants. In VHDL examples might be:

('0' and '1') or '1'

 e + f

If e and f are constants, generics, generates, loop iterators or, in VHDL speak, are static, then the
expression is a static expression and also metalogical. Metalogic expressions may also contain
variables. More on this later in this section.

A more useful example of a metalogic expression might be the loop expression :

for i in 4 to 9 loop

left(i) <= right(i+2);
end loop;

The expression i+2 implies no logic. It is a metalogic expression, used (and the loop statement) to
specify information about the design, which does not appear in the implementation. The result is more

TR0115 (v1.1) June 10, 2005 71

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

concise, and the relationship between the arrays left and right is more clear. Of course, five distinct
assignments would produce the same result.

An expression containing a variable will be metalogical if the variable's value depends only on a
metalogic expression. Metalogical Variables are very powerful, but it is only possible to tell if they are
metalogical from the context. An expression is said to be a metalogic expression if it is a static
expression, a metalogic expression may in addition contain variables whose values depend only upon
metalogic expressions.

A larger example of metalogic might be the following function, which converts a bit vector to an integer.
The logic generated may be different at each function call, depending upon the argument passed at
each call.

constant too_long_msg : STRING :

= "Array too long to be integer.";
constant too_short_msg : STRING :

= "Null array passed to subprogram.";
function to_integer (arg : BIT_VECTOR) return INTEGER is

variable result : INTEGER := 0;

variable w : INTEGER := 1;

begin

-- Report null range
assert arg'length > 0 report too_short_msg severity NOTE;

-- Assert array size limit.
assert arg'length < 32 report too_long__msg;

-- Calculate bit_vector value.
for i in arg'reverse_range loop

if arg (i) = '1' then

result := result + w;
end if;

-- test before multiplying w by 2, to avoid overflow
if i /= arg'left then

w := w + w;
end if;

end loop;

return result;

end to_integer;

Reviewing this function you can see that the variable 'w' depends only on the initial value (w: integer :=
1;) and the current value of 'w' (w := w + w). It can be said that 'w' is always a metalogical variable and
the assignments to 'w' imply no logic.

72 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

The variable 'result' depends on the initial value of 'result' (metalogic), the value of 'w' (metalogic), and
'arg', which depends on the argument the function is called with. If the function is called with a
metalogic parameter, say :

to_integer("010101");

then arg is a constant, and hence metalogic. It also follows that 'result' is metalogic. The function
implies no logic, just pull up and pull down. However, if the function were called with a logical
parameter, arg would not be metalogic, so hardware is implied. For example:

to_integer(some_signal);

In this case the algorithm implemented is such that the hardware is simply wires. (hint: a binary
representation of 'w' is always a single 1 and many 0s).

Variables declared in subprograms allow metalogic expressions. The same is true of variables
declared in a process. However, variables in a process usually depend on the sensitivity list of a wait
statement (statement and list may be explicit or implied). Therefore, they are usually not metalogical.
In simulation terms, variables in a process persist over time. Variables in a subprogram are created
when the subprogram is called and destroyed when it returns (like the difference between static
variables and automatic variables in C).

Metalogic values
Metalogic values are extensions added to the design description. They provide additional information
for tools to allow the tools to produce better results. Two examples are unknowns (X) for simulation and
don’t care (-) for logic optimization. These metalogic values are added as alternatives to logic values
(0,1) within the tools. These metalogic values may have different meanings to different tools.

Unknowns allows you to detect design description errors during simulation. Errors such as
unconnected inputs or connected outputs (try writing boolean equations for these !) clearly do not
describe logic. Unknowns due to uninitialized registers (but not unknowns injected due to timing errors)
also highlight boolean logic errors. As long as a simulation propagates such metalogic you know that
the design description does not represent logic.

Don’t care works around one of the limitations of a boolean representation, allowing logic minimizers
and technology mappers to produce more compact description. A high level language provides a more
elegant solution, in which the user never has to consider don’t cares. This alternative is to describe the
design using multi-valued enumerated types in place of arrays of booleans.

An understanding of metalogic values is significant because the output of a synthesis tool is boolean
logic (0,1); therefore, the metalogic values are removed (and possibly used) during synthesis. This is
significant if the operation of a design depends upon metalogic values. A design that depends on
some signal having a value X has two possible implementations: the signal is either 0 or 1 (but never
X).

Within VHDL, the only common use of metalogic values is some of the elements of the enumerated
type std_ulogic :

std_ulogic : type is ('U','X','0','1','Z','W','L','H','-');

The IEEE standard 1076.3 specifies that four of these values ('U' 'X' 'W' '-') are metalogic values, with
specific semantics. However, to a simulator they are just elements of an enumerated types. For

TR0115 (v1.1) June 10, 2005 73

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

synthesis, the attribute 'enum_encoding' is used to describe which elements describe logic values and
which describe metalogic values. The Synthesizer follows the standard and considers '0' , '1', 'Z'. 'L'
and 'H' as logic values and the remainder as metalogic values. The metalogic values may be used
within the Synthesizer's logic minimization.

When using std_logic, the metalogic values 'U' 'X' 'W' and '-' have one meaning to a simulation tool and
another (don’t care) to a synthesis tool. Within the Synthesizer, metalogic values are not simply thrown
away, but are treated in expressions as don’t cares as specified by enum_encoding. Signals do not
propagate metalogic values, only '0' '1' and possibly 'Z'.

The use of metalogical values is one possible difference between a simulation model and a hardware
design. For example, with one metalogic argument an equality operation will always return false in
synthesis, but in simulation the result will depend upon the current value of the other argument;
therefore, unknown handling may be used for simulation and ignored for synthesis:

assert not isome_signal = 'X' report "unknown, bad news" severity error;

The function 'is_x' from 'ieee.std_logic_1164' may be used as a run time synthesis or simulation flag.
This function will always return false within synthesis, and its result depends upon the current value
during simulation.

if is_x('W') then

assert false report "simulation code" severity note;

else

assert false report "synthesis code" severity note;

end if;

WARNING: Such tricks may impair your validation methodology.

74 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Macrocells
Complex logic cells such as add or compare may be inferred from VHDL expressions or instantiated as
VHDL statements. Instantiated silicon specific logic cells of a fixed size using components is discussed
in the topic 'Using Hierarchy' under the section 'Silicon specific components' (see the Related Topics
section below).

Instantiating parameterized components for macrocell compilers is described in the related topics.
Examples of macrocell compilers are LPM compilers and the Logiblox compiler.

If the formal port declarations are unconstrained, or generics are used, the macrocell becomes a
parameterized macrocell. Parameterized macrocells are only supported for the EDIF and Open Abel 2
output formats.

The compiler reports instantiated parameterized macrocells :

component : u1 : Parameterized Macrocell "compare"

In addition macrocells may be automatically inferred by the compiler. Whether inferred or instantiated,
macrocells usually give better synthesis results in terms of both area and delay; compilation is usually
faster too. The log file will contain the names of macrocells inferred for each process.

Parameterized Macrocell Instantiation
If no entity is bound to a component and the formal port declarations are unconstrained, or generics
are used, the macrocell becomes a parameterized macrocell. Parameterized macrocells are only
supported for the EDIF and Open Abel 2 output formats. Parameterized macrocells are implemented
by silicon specific macrocell compilers in downstream tools, invocation of these compilers is usually
automatic. Macrocell compilers may require specific properties added to the component or instance
(see documentation for the compiler), these may be added with a generic map or with a VHDL
attribute.

The compiler reports instantiated parameterized macrocells as:

component : u1 : Parameterized Macrocell "compare"

For example, the Compare macrocell from the Xblox library is declared with unconstrained ports and a
style parameter:

component compare

generic (style : string := "");

port (a, b: std_logic_vector;

a_eq_b, a_ne_b, a_lt_b, a_gt_b, a_le_b, a_ge_b :
 out std_logic);

end component;

attribute macrocell of compare : component is true;

The macrocell may be instantiated with input ports whose size varies with each instantiation. The
parameter style may be specified or left as the LPM or Logiblox default. And, in the usual VHDL
manner, named association may be used to pick from the out ports. For example:

TR0115 (v1.1) June 10, 2005 75

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

U1: compare port map (a_byte, b_byte, a_eq_b => eql);

U2: compare port map (a_byte, b_byte, a_eq_b => eql ,

 a_ge_b => bigger);
U3: compare generic map ("RIPPLE")

port map (a_word, b_word, a_le_b =>lss);

Combinatorial Macrocell Inference
Inference occurs transparently to the user when the output format supports parameterized macrocells.
Inference maps VHDL relational and arithmetic operators to format specific macrocells. For example,
the multiply operation below will results in a multiply macrocell in the LPM format, and a set of adder
macrocells in the Logiblox format.

p <= a * b;

The relational operations map to the Compare macrocell. The following two concurrent statements are
equivalent :

neq <= a_nibble /= b_nibble;
U1: compare port map (a_nibble, b_nibble, a_ne_b => neq);

Macrocell inference only occurs if both operands are VHDL signals (or more formally are not metalogic
expressions). So for example, adding two VHDL constants will not produce an adder macrocell.

Sequential Macrocell Inference
If a process contains both inferred flip flops and an inferred combinational macrocell, the compiler can
infer a sequential macrocell. An example is a counter with reset described using a concurrent
statement.

count <= 0 when reset = '1' else count +1 when

rising_edge(clock);

Sequential macrocells often have a synchronous load control, which may be specified using an if
statement. Load inference has the lowest priority of all register control inference. For example, an
accumulator with load:

process(RST,CLK)

begin

if RST then -- Reset

Q <= 0;
else

if (CLK and CLK'event) then

if load then

Q <= P;
else

Q <= P + Q;

76 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

end if;

end if;

end if;

end process;

end behavior;

The characteristic of load having a lower priority than clock enable for instance, is a characteristic of
the target macrocell and is simply reflected in the VHDL macrocell inference engine. Sometimes your
design may specify different behavior - but you still want to take advantage of macrocell inference.
Suppose your design specified a counter with an enable and a load that has a higher priority than clock
enable. You could do the following :

process (RST,CLK)

begin

if RST then -- Async Reset

Q <= 0;
else

if CLK and CLK'event then

if LD or CE then -- load dominates clock enable,

 -- so OR clkena pin
if LD then -- sync load

Q <= D;
else

Q <= Q + 1;
end if;

end if;

end if;

end if;

end process;

Resource Sharing
Resource sharing is a compiler technique for sharing inferred macrocells in order to reduce the design
area. The domain of resource sharing is a process, macrocells inferred within a single process may be
shared, macrocells inferred in different processes will not be shared. The actual resource sharing
performed will depend upon the target silicon architecture and on the compiler. If you write code that
depends upon resource sharing you should check the log with debugging turned on to see that the
implementation was as you expected.

TR0115 (v1.1) June 10, 2005 77

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Synthesis Attributes
One feature of VHDL that may not be familiar to programmers is attributes. VHDL has many predefined
attributes which allow access to information about types, arrays, and signals. Some examples are :

integer'high -- has a value of 2147483647

integer'low -- has a value of -2147483647

If a subtype of type integer is declared

subtype shorter is integer range 0 to 100;

shorter'high -- has a value of 100

shorter'low -- has a value of 0

and

shorter'base'high -- has a value of 2147483647

when used with an array the 'high attribute has a value of the array index:

type my_array is array (0 to 99) of boolean;

variable info : my_array;

info'high -- has a has a value of 99

There is a set of attributes which give access to information about signal waveforms. Most signal
attributes are for simulation, and have no meaning in the context of synthesis. However one, 'event, is
useful. It may be used on signals to specify edge sensitivity. It is usually used in combination with a
value test to specify a rising or falling edge.

signal clock : boolean;

not clock and clock'event -- specifies a falling edge.

User-defined attributes
VHDL allows the user to define their own attributes. The Altium Designer-based VHDL tools use this
capability to define attributes for synthesis, and to define attributes (also called properties or
parameters) for downstream tools. The declaration of synthesis attributes are described in the
following sections. Synthesis attributes described here are not passed to downstream tools. To use
these attributes, either make them visible (use metamor.attributes.all), or copy to your VHDL source
description. The value of these attributes must be locally static.

package attributes is

-- User defined place and route information passed to

-- output file

attribute pinnum : string;

78 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

attribute part_name : string;

attribute property : string;

-- User defined encoding of enumerated types

attribute enum_encoding : string;

-- User specified critical nodes

attribute critical : boolean;

-- User specified macrocells

attribute macrocell : boolean;

end attributes;

Array_to_numeric (Synthesis attribute)
Some type conversion functions can be very slow to compile during VHDL synthesis. This attribute
accelerates compilation in one specific and common case: converting arrays to numbers. An example
is converting a bit_vector to an integer. This particular conversion specifies no logic but is slow to
compile.
The Synthesizer provides an attribute, array_to_numeric (and also a numeric_to_array attribute), to
short circuit the compilation of such functions as follows:

function to_integer (arg : BIT_VECTOR) return INTEGER is

variable result : natural := 0;

variable w : natural := 1;

attribute array_to_numeric of to_integer : function is true;

begin

-- Calculate bit_vector value.
for i in arg'reverse_range loop

if arg (i) = '1' then

result := result + w;
end if;

TR0115 (v1.1) June 10, 2005 79

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

-- test before multiplying w by 2, to avoid overflow
if i /= arg'left then

w := w + w;
end if;

end loop;

return result;

end to_integer;

The attribute may only be applied to functions with an array formal parameter returning a numeric type
when the parameter and the return value have the same synthesis encoding. For the array argument,
'left is assumed to be the most significant bit.

The array argument is treated as signed or unsigned depending on the subtype of the function return
value. If the subtype of the return value ('natural' , the subtype of the variable 'result' in the example
above) is signed (integer is signed), the array argument is sign extended. If the subtype is unsigned
(natural is unsigned), the argument is zero extended.

When this attribute is true, the formal parameter is returned by the function with the subtype of the
returned object. Since this function short circuits the semantics of VHDL it should be used with caution.

Clock_buffer (Synthesis attribute)
This attribute is ignored if the compiler output format is not EDIF. If the output format is EDIF and input
and output buffers are being inserted, this attribute causes a clock buffer to be added in place of an
input buffer. If buffers are not being inserted, the user may simply instantiate a technology specific
clock buffer.

The attribute must be declared as :

attribute clock_buffer : boolean;

For example

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity prep7 is

generic (width : natural := 15);

port (CLK, RST,LD,CE : in std_logic;

D : in std_logic_vector (width downto 0);

Q : buffer std_logic_vector (width downto 0));

-- declare clock_buffer attribute
attribute clock_buffer : boolean;

-- mark port CLK as using a clock buffer
attribute clock_buffer of CLK : signal is true;

end prep7;

80 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Critical (Synthesis attribute)
This introduces nodes into the design, but does so from the VHDL source. The attribute critical allows
the user to specify signals in the VHDL description whose timing is critical. An assignment to such a
specified signal may imply a node in the output logic description. Critical is also used to put factoring
under control of the user.

attribute critical of a,b,c : signal is true; --a,b,c are nodes

In general, the Synthesizer will create a logic minimized design description in which there may be no
one to one mapping between objects in the VHDL source description and combinational nodes in the
output logic description.

Sometimes this 'minimum logic' description (where logic nodes are collapsed as controlled by the
Optimizer) is not optimal for the propagation delay or layout of the resulting logic. In this event, the user
may control the logic minimization by means of the attribute critical, which is applied to a signal in the
VHDL source description.

This may be of use when the delay of the resulting logic can benefit from the designers knowledge of
the structure or circuit (electrical/timing) characteristics of the implementation and not simply depend
on being logically minimal. Critical constrains both the logic Optimizer and the synthesis function as
specified by the user. It is also used to specify signals that will have net attributes for downstream
tools.

Example

library ieee;

use ieee.std_logic_1164.all;

package encode2 is

subtype byte is std_logic_vector (7 downto 0);

subtype state_type is std_logic_vector (4 downto 0);

constant st0 : state_type := "00101";

constant st1 : state_type := "00000";

constant st2 : state_type := "10000";

constant st3 : state_type := "00100";

constant st4 : state_type := "10100";

constant st5 : state_type := "01100";

constant st6 : state_type := "01000";

constant st7 : state_type := "10101";

constant st8 : state_type := "10001";

constant st9 : state_type := "11000";

constant st10 : state_type := "10011";

constant st11 : state_type := "00011";

constant st12 : state_type := "00001";

TR0115 (v1.1) June 10, 2005 81

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

constant st13 : state_type := "01101";

constant st14 : state_type := "01001";

constant st15 : state_type := "11001";

constant dont_care : state_type := "-----";

end;

library ieee;

use ieee.std_logic_1164.all;

use work.encode2.all;

entity state_machineis

port (clk,rst : boolean;

i : byte;
o : out byte);

end state_machine;

architecture instance of state_machine is

signal machine : state_type;

begin

process (clk,rst)

begin

if rst then

machine <= st0;
elsif clk and clk'event then

case machine is

when st0 =>

case I is

when "00000000" => machine <= st0;

when "00000001" to "00000011" => machine <= st1;

when "00000100" to "00011111" => machine <= st2;

when "01000000" to "00111111" => machine <= st3;

when others => machine <= st4;

end case;

when st1 =>

if I(1 downto 0) = "11" then

machine <= st0;

82 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

else

machine <= st3;
end if;

when st2 =>

machine <= st3;
when st3 =>

machine <= st5;
when st4 =>

if (I(0) or I(2) or I(4)) = '1' then

machine <= st5;
else

machine <= st6;
end if;

when st5 =>

if (I(0) = '0') then

machine <= st5;
else

machine <= st7;
end if;

when st6 =>

case I(7 downto 6) is

when "00" => machine <= st6;

when "01" => machine <= st8;

when "10" => machine <= st9;

when "11" => machine <= st1;

end case;

when st7 =>

case I(7 downto 6) is

when "00" => machine <= st3;

when "11" => machine <= st4;

when others => machine <= st7;

end case;

when st8 =>

if (I(4) xor I(5)) = '1' then

machine <= st11;
elsif I(7) = '1' then

TR0115 (v1.1) June 10, 2005 83

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

machine <= st1;
end if;

when st9 =>

if I(0) = '1' then

machine <= st11;
end if;

when st10 =>

machine <= st1;
when st11 =>

if i = "01000000" then

machine <= st15;
else

machine <= st8;
end if;

when st12 =>

if i = "11111111" then

machine <= st0;
else

machine <= st12;
end if;

when st13 =>

if (I(5) xor I(3) xor I(1)) = '1' then

machine <= st12;
else

machine <= st14;
end if;

when st14 =>

case I is

when "00000000" => machine <= st14;

when "00000001" to "00111111" => machine <= st12;

when others => machine <= st10;

end case;

when st15 =>

if (I(7) = '1') then

case I(1 downto 0) is

when "00" => machine <= st14;

84 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

when "01" => machine <= st10;

when "10" => machine <= st13;

when "11" => machine <= st0;

end case;

end if;

when others => machine <= dont_care;

end case;

end if;

end process;

with machine select

O <= "00000000" when st0,

 "00000110" when st1,

 "00011000" when st2,

 "01100000" when st3,

 "1------0" when st4,

 "-1----0-" when st5,

 "00011111" when st6,

 "00111111" when st7,

 "01111111" when st8,

 "11111111" when st9,

 "-1-1-1-1" when st10,

 "1-1-1-1-" when st11,

 "11111101" when st12,

 "11110111" when st13,

 "11011111" when st14,

 "01111111" when st15,

 "--------" when others;

end;

library metamor;

use metamor.attributes.all;

use work.encode2.all;

entity prep4 is

port (clk,rst : boolean;

TR0115 (v1.1) June 10, 2005 85

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

i : byte;
o : out byte);

end prep4;

architecture top_level of prep4 is

component state_machine

port (clk,rst : boolean;

i : byte;
o : out byte);

end component;

signal q1,q2,q3 : byte;

attribute critical of q1,q2,q3 : signal is true; --q1,q2,q3 are nodes

begin

u1 : statemachine port map (clk,rst,i,q1);

u2 : statemachine port map (clk,rst,q1,q2);

u3 : statemachine port map (clk,rst,q2,q3);

u4 : statemachine port map (clk,rst,q3,o);

end;

Critical is used in this example to separate the output encoder of one instance from the input decoder
of the next; the result is a faster design. Critical is used in this case because neither the inputs or
outputs of the components are registered. The state machine inputs are also encoded in such a way
that they (just) fit within 16 product terms. In the multiple instance case, manual specification of the
critical nodes in the combined output/input logic using the critical attribute produces better results than
automatic synthesis.

The relationship between the name of a VHDL signal specified as critical, and its equivalent netlist
node may be complex. For example, a one bit signal may result in no node if its use is redundant, or
many nodes if hierarchy is used. The name of the VHDL signal may be maintained unless this would
lead to a conflict. It may be prefixed with instance or block labels, or package names, and suffixed with
a number if it represents more than one wire, or have a machine generated name.

Enum_encoding (Synthesis attribute)
You may need to specify different machine encoding for different hardware technologies. For example,
one hot encoding may be preferred for an FPGA but not for a CPLD. The enum_encoding attribute
allows you to specify how symbolic values declared as enumerated types are actually encoded in
hardware.

The most common application of the enum_encoding attribute is in the specification of a state machine.
Other applications include the resolution of multi-valued logic (such as std_ulogic) and for introducing
don't cares into a decoder function.

86 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Foreign (Synthesis attribute)
VHDL has an external language interface to allow users to specify modules in some non-VHDL form;
the implementation is VHDL tool specific. The foreign attribute supports external HDLs . This
mechanism is only supported using those output formats that support hierarchy and linking.

This attribute may be applied to an architecture. Its value specifies the name of the external module.
For example :

entity abel_code is

port (a,b : bit_vector(0 to 7) ; sum : out bit_vector(0 to 8));

end abel_code;

architecture simple of abel_code is

attribute foreign of simple : architecture is "adder";

begin

end simple;

These statements in the architecture are ignored, and a call to the foreign language module 'adder' is
generated when the entity abel_code is instantiated in a VHDL design. The inputs and outputs of adder
must match the port declarations in VHDL. There are two constraints: the VHDL ports must have
locally static types, and VHDL generics are not passed to the external module.

For example, the adder might be described in Abel :

MODULE adder

a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7 pin;

b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7 pin;

sum_0, sum_1, sum_2, sum_3, sum_4, sum_5, sum_6, sum_7, sum_8 pin;

a = [a_7..a_0];

b = [b_7..b_0];

sum = [sum_8..sum_0];

EQUATIONS

sum = a + b;

END;

A side effect of the foreign attribute is that the foreign module might be defined in VHDL. An easier
way to do this is provided by the hierarchical compilation feature.

TR0115 (v1.1) June 10, 2005 87

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Inhibit_buf (Synthesis attribute)
For the XNF and EDIF output formats you may set a compile option that automatically inserts input and
output buffers for the target device. Sometimes you may wish to override this buffer insertion on a per-
pin basis. This may be done by attaching the inhibit_buf attribute to the top level port (as in the
example insertion of a clock buffer shown below, or with any silicon specific IO structure).

library ieee;

use ieee.std_logic_1164.all;

entity Parent is

port (clk : std_logic;

a : std_logic_vector (7 downto 5);

v : out std_logic_vector (3 downto 1));

-- inhibit automatic input buffer on signal clk

-- because of clock buffer instantiation
attribute inhibit_buf : Boolean;

attribute inhibit_buf of clk : signal is true;

end Parent;

architecture behavior of Parent is

-- vendor specific clock buffer
component CLKBUF

port (I : std_logic; O : out std_logic);

end component;

signal clk_buf : std_logic;

begin

-- 3 flip flops
v <= a when rising_edge(clk_buf);

-- instantiate clock buffer
u0 : CLKBUF port map (clk,clk_buf);

end;

Macrocell (Synthesis attribute)
The macrocell attribute is used to specify an alternate multi-bit port name expansion convention in two
special cases (unbound components and root entity) and also to mark unbound components for use by
a macrocell compiler. The macrocell attribute is required for parameterized macrocells such as
XBLOX and LPM.

The alternate naming convention is "NameNumber" with no index delimiter character so that in the port
names of IN_BUF_3 and OUT_BUF_3 will be I0,I1,I2,O0,O1,I2. This is for linking with logic from other

88 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

tools such as certain schematic capture packages. Examples of multi-bit types are integer and
std_logic_vector. Examples of single bit types are bit and std_logic.
When a component instance has no entity bound to it the macrocell attribute is used to specify the
alternate naming convention for the component's multi-bit formal ports. This is used to allow linking
child components from other some tools.
When a top level entity has a macrocell attribute set true the top level ports will use the alternate
convention. This is used to allow linking the output netlist with a parent netlist from some other tools.

library ieee;

use ieee.std_logic_1164.all;

entity Parent is

port (a : std_logic_vector (7 downto 5);

v : out std_logic_vector (1 to 3));

end Parent;

architecture behavior of Parent is

-- component declaration , unbound
component IN_BUF_3

port (I : std_logic_vector (2 downto 0) ;

O : out std_logic_vector (0 to 2));

end component;

component OUT_BUF_3

port (I : std_logic_vector (2 downto 0) ;

O : out std_logic_vector (0 to 2));

end component;

signal x : std_logic_vector (2 downto 0);

attribute macrocell : Boolean;

attribute macrocell of IN_BUF_3, OUT_BUF_3 : component is true;

begin

-- component instantiation
u0 : IN_BUF_3 port map (a,x);

u2 : OUT_BUF_3 port map (x,v);

end;

Note that if the component formal ports have an unconstrained type (such as XBLOX or LPM
instances) the macrocell attribute must be used. Components that have unconstrained formal ports or
generics are parameterized, attaching the macrocell attribute also indicates that a downstream
macrocell compiler (such as an XBLOX or LPM compiler) will be used.

TR0115 (v1.1) June 10, 2005 89

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Numeric_to_array (Synthesis attribute)
Some type conversion functions can be very slow to compile during VHDL synthesis. This attribute
accelerates compilation in one specific and common case: converting numbers to arrays. An example
is converting integer to std_logic_vector.
The Synthesizer provides an attribute, numeric_to_array (and also a array_to_numeric attribute), to
short circuit the compilation of such functions as follows:

function int_2_v(int, bits : integer) return std_logic_vector is

variable out_vec : std_logic_vector((bits-1) downto 0) := (others =>
'0');
variable tmp : integer := int;

--attribute numeric_to_array speeds compilation
attribute numeric_to_array : boolean;

attribute numeric_to_array of int_2_v : function is true;

begin

for i in 0 to (bits-1) loop

if ((tmp mod 2) = 1) then

out_vec(i) := '1';
end if;

tmp := tmp/2;
end loop;

return out_vec;

end int_2_v;

The attribute may only be applied to functions with a numeric formal parameter returning an array type
when the parameter and the return value have the same synthesis encoding. For the array result 'left is
assumed to be the most significant bit.

When this attribute is true, the formal parameter is returned by the function with the subtype of the
returned object. Note that you may have more than one formal argument, its the first that is returned,
other arguments may be used to set the returned subtype as shown in the example. Since this function
short circuits the semantics of VHDL it should be used with caution.

Part_name (Synthesis attribute)
The Synthesizer allows designers to pass place and route information to fitters, or netlists. This
information has no meaning to the Synthesizer, it is simply passed from VHDL to the output file.
The part_name attribute is used to specify the target device, it may be applied to the top level entity.
The attribute is declared as :

attribute part_name : string;

90 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

The value may be specified as follows (for backward compatibility, the library 'metamor' is still used in
the coding example):

library metamor;

use metamor.attributes.all

entity special_attributes is

port(c : bit_vector (3 to 5);

d : bit_vector (27 downto 25);

e : out boolean) ;

--usage of part_name
attribute part_name of special_attributes : entity is "22v10";

end special_attributes;

The device compile option will override the value of the part_name attribute.

Pinnum (Synthesis attribute)
The Synthesizer allows designers to pass place and route information to fitters, or netlists. This
information has no meaning to the Synthesizer, it is simply passed from VHDL to the output file.
The pinnum attribute is used to specify the pinout in the target device, and may be applied to ports in
the top level entity. The attribute is declared as :

attribute pinnum : string;

Its value is a string containing a comma (',') delimited list of pad names or pin numbers. These values
are assigned to the elements of the port in a left to right order. For example :

library metamor;

use metamor.attributes.all

entity special_attributes is

port (a, b : in integer range 0 to 7;

 c : bit_vector (3 to 5);

 d : bit_vector (27 downto 25);

 e : out boolean) ;

-- usage of pinnum
attribute pinnum of a : signal is "4,5,6,7"; -- extra pin ignored

-- a(0) gets "6"
attribute pinnum of b : signal is "8,9"; -- missing pin number

-- b(0) not assigned
attribute pinnum of c : signal is "a3,b4,a1"; -- ascending order

TR0115 (v1.1) June 10, 2005 91

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

-- c(3) gets "a3"
attribute pinnum of d : signal is "w1,W2,w99"; -- descending order

-- d(27) gets "w1"
attribute pinnum of e : signal is "2"; -- single bit

end special_attributes;

Notes
For backward compatibility, the library 'metamor' is still used in the coding example.

Property (Synthesis attribute)
The Synthesizer allows designers to pass place and route information to fitters, or netlists. This
information has no meaning to the Synthesizer, it is simply passed from VHDL to the output file.
If the output is not EDIF then the property attribute is used to pass an arbitrary string to the output file.
If applied to an entity the value is included at the head of the output file, if applied to a port the value is
included as a property of the port in the output file. The attribute is declared as :

attribute property : string;

The value is passed directly to the output file; therefore, you will need to know the legal syntax for that
file. The second example shows how using VHDL functions can make this task less error prone.

library metamor;

use metamor.attributes.all

entity special_attributes is

port (c : bit_vector (3 to 5);

 d : bit_vector (27 downto 25);

 e : out boolean) ;

-- usage of property on an entity
attribute property of special_attributes : entity is

"lca some text" & CR &

"lca more text" & CR &

"lca yet more text" & CR &

"amdmach Mach Specific STuff";

-- usage of property on a port
attribute property of e : signal is "Fast";

end special_attributes;

Strings are passed to the output file exactly as specified in the VHDL source, and case is maintained. A
characteristic of VHDL is that a new line character is not legal within a string; therefore, to create
several lines, strings and a new line are concatenated using "xxx" & CR & "yyy" as shown in the

92 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

example above. This can get a little cluttered unless you declare functions for commonly used string
values. For example:

package xilinx is

function timespec (name, from, too, delay : string) return string;

end;

package body xilinx is

-- returns an XNF timespec symbol
function timespec(name,from,too,delay : string) return string is

begin

return "SYM, XXX" & name &

", TIMESPEC, LIBVER=2.0.0, " & name &

"=from:" & from & ":to:" & too & "=" & delay & CR &

"END" & CR;
end;

end;

library ieee,metamor;

use ieee.std_logic_1164.all;

use metamor.attributes.all;

use work.xilinx.all;

entity MORE_ATTRIBUTES is

port (d,c,ce,r,tri : in std_logic;

q,p : out std_logic;

w : out std_logic_vector(2 downto 0));

attribute property of MORE_ATTRIBUTES : entity is

timespec("TS1","FFS","FFS","30ns") &

timespec("TS2","PADS","LATCHES","35ns") &

timespec("TS3","FFS","RAMS","25ns");

attribute property of q,w : signal is "FAST";

-- 4 pins are "FAST"
end;

Note
For backward compatibility, the library 'metamor' is still used in the coding examples.

TR0115 (v1.1) June 10, 2005 93

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Ungroup (Synthesis attribute)
The ungroup attribute removes hierarchy from the design and also overrides the default logic optimize
behavior. By default, the logic Optimizer works on the logic within a single architecture. The logic is
separately optimized for any component instantiated within the architecture maintaining the hierarchy.
By removing the Child from the hierarchy, ungroup causes a Child component to be optimized as part
of its Parent. If a Child component has an ungroup attribute with a value true, its architecture is
optimized as part of its Parent architecture. Multiple instances of a component with an ungroup
attribute cause the logic for each instance to be added to the parent prior to optimization.
In the following trivial example, if ungroup is true the result is a wire, if ungroup is not present (or
false) the implementation is an AND with its inputs connected.

---Child
library ieee;

use ieee.std_logic_1164.all;

entity Child is

port (A, B : std_logic;

C : out std_logic);

end Child;

architecture behavior of Child is

begin

C <= A and B;

end;

---Parent
use ieee.std_logic_1164.all;

entity Parent is

port (X : std_logic;

Y : out std_logic);

end Parent;

architecture behavior of Parent is

-- component declaration , bound to Entity Child above
component Child

port (A, B : std_logic;

C : out std_logic);

end component;

-- UNGROUP TRUE, child is optimized as part of Parent
attribute ungroup : Boolean;

attribute ungroup of Child : component is true;

94 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

begin

-- component instantiation
u0 : Child port map (X, X, Y);

end;

The ungroup attribute might be used when compiling a design made up of components specifying a
small amount of logic (such as TTL components). Unbridled use of the ungroup attribute can result in
attempts to optimize large Parent blocks of logic, which may take a significant time.

Xilinx_BUFG (Synthesis attribute)
This attribute is ignored if the compiler output format is not Xilinx EDIF. If the output format is Xilinx
EDIF and input and output buffers are being inserted, this attribute causes IBUFs to be replaced by
BUFGs. If buffers are not being inserted, the user may simply instantiate a BUFG.

The attribute must be declared as :

attribute Xilinx_BUFG : boolean;

For example

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity prep7 is

generic (width : natural := 15);

port (CLK, RST,LD,CE : in std_logic;

D : in std_logic_vector (width downto 0);

Q : buffer std_logic_vector (width downto 0));

-- declare Xilinx layout attribute
attribute Xilinx_BUFG : boolean;

-- mark ports CE and LD as using BUFG

-- (CLK will get BUFG by default)
attribute Xilinx_BUFG of CE, LD : signal is true;

end prep7;

TR0115 (v1.1) June 10, 2005 95

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Xilinx_GSR, FPGA_GSR (Synthesis attribute)
The attributes Xilinx_GSR and FPGA_GSR have identical behavior. These attributes are ignored if the
compiler output format is not EDIF for certain FPGAs. If the output format is EDIF for certain FPGAs
then this attribute is used to mark a signal that uses the global set or reset resource. The marked signal
must be a top level port. The marked signal is disconnected from any flip-flop preset or clear, and for
Xilinx the flip-flop has an INIT property added. Note, some FPGAs have an active low GSR and
require the appropriate signal in the VHDL be coded as active low.

A STARTUP (or equivalent) symbol must be instantiated in the top level and connecting its GSR input
to a port. If the whole design is compiled in one pass (regardless of the number of entities) then no
FPGA_GSR attribute is required. For example:

library IEEE;

use IEEE.std_logic_1164.all;

entity design is

port (d,set,clk : std_logic;

q : out std_logic);

end design;

architecture design of design is

component startup is

port (gsr : std_logic);

end component;

begin

u0 : startup port map (set);

q <= '1' when set = '1' else d when rising_edge(clk);

end design;

Alternatively if the VHDL is compiled in several parts (and the EDIF or XNF linked later) then the top
level must have a STARTUP (or equivalent) symbol, and the other levels have a FPGA_GSR attribute
attached to their reset port. For Example:

-------Parent.vhd
library IEEE;

use IEEE.std_logic_1164.all;

entity parent is

port (d,set,clk : std_logic;

q : out std_logic);

end parent;

architecture parent of parent is

96 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

component startup is

port (gsr : std_logic);

end component;

component child is

port (d,set,clk : std_logic;

q : out std_logic);

end component;

begin

u0 : startup port map (set);

u1 : child port map (d,set,clk,q);

end parent;

-------------Child.vhd
library IEEE;

use IEEE.std_logic_1164.all;

entity child is

port (d,set,clk : std_logic;

q : out std_logic);

end child;

architecture child of child is

attribute FPGA_gsr : boolean;

attribute FPGA_gsr of set : signal is true; -- routed using GSR

begin

q <= '1' when set = '1' else d when rising_edge(clk);

end child;

Attributes for Downstream Tools
The Synthesizer's compiler makes use of user defined attributes to pass information to downstream
tools. The compiler also recognizes some attributes such as critical or ungroup to control its own
operation. These are not passed to downstream tools. This section discusses the rules for passing
attributes to downstream tools and shows some specific examples.

The use of attributes is complicated by the diverse usage by downstream tools; also by the distinction
between port, instance, and net which does not exist in RTL or behavioral VHDL code but usually exist
in the output netlist; and also by any hierarchy flattening that may occur.

TR0115 (v1.1) June 10, 2005 97

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

To pass attributes to downstream tools you will need to know the netlist format, and the attributes plus
their netlist location recognized by the downstream tool. Please refer to the downstream tool
documentation for its legal attribute names, values and locations.

In the VHDL source, attributes may be passed as:

•

•

•

•

the attribute as a name/value pair, this passes the pair to the netlist

the value of the attribute "property", this passes only the value to the netlist

the value of the attribute "pinnum", this passes pin numbers to the netlist

the value of the attribute "part_name", this passes the specific device to the netlist.

Attributes passed as name/value pairs should be a type of string, integer, boolean, or a vector. These
are representations usually expected by downstream tools. The following table shows how these VHDL
attributes (attached to specific VHDL objects) are propagated to EDIF, OpenAbel 2, and DSL, as well
as the objects to which they are attached. Note, your version of the compiler may only support some of
these netlist formats.

Note (1) Some downstream tools do not support this.

Note (2) EXT if inserting IO buffers else SIG.

Note (3) Hierarchy removed by flattening during compile.

Note (4) If then attribute type is boolean then only attribute name is written (if value is true).

Note (5) Unassociated with any netlist object.

98 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Attributes attached to a signal may be attached to an instance, a net or a port in the netlist according to
the priority, highest to lowest, listed below. (The attributes may also be ignored.)

•

•

•

•

If the signal is a port then attribute is attached to a netlist port.

If the signal infers a flip-flop, latch, or tristate then attribute is attached to a netlist instance

If the signal has a synthesis attribute "critical" then attribute is attached to a netlist net.

Other cases are ignored.
In order to place an attribute on a net the synthesis attribute, critical, must be attached to a VHDL
signal. The same attribute is ignored when attached to ports or registers. You may need to create
temporary signals in your VHDL source to distinguish attribute placement if there is a conflict between
net, port, and instance. For example, an out port that infers a flip-flop may require a slew attribute on
the netlist port and a location attribute on the netlist instance of the flip-flop. These are distinct in the
netlist but may be represented by the same signal in the VHDL source. In this case an extra signal
must be added to the VHDL to support attribute passing.

Some examples follow.

For explicit instances, attach the VHDL attribute to the instance label as shown below:

architecture x of y is

-- Placement hints
attribute CHIP_PIN_LC of u0 : label is "LAB2";

attribute CHIP_PIN_LC of u2 : label is "LAB7";

begin

u0 : buffer port map (a,b);

u1 : buffer port map (x,y);

....

You may also use generics to pass instance parameters. This approach is useful if the child
component won't be synthesized, but will have a simulation model that needs to see the attribute value.

architecture x of y is

component ROM

generic (filename : string)

port (A : std_logic_vector (7 downto 0) ;

D : out std_logic_vector (4 downto 0));

end component;

begin

uo : ROM generic map ("init.prg") port map (address,data);

....

Adding attributes to netlist instances of inferred flip-flops, latches, or tristates is done using VHDL
attributes attached to the signal.

architecture x of y is

TR0115 (v1.1) June 10, 2005 99

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

signal q : std_logic_vector (3 downto 0);

-- Register placement hint,

-- all 4 flip-flops get REGTYPE=IOC
attribute REGTYPE of q : signal is "IOC" ;

begin

q <= d when rising_edge(clk);

....

You may attribute nets , but only if the compiler is allowed to retain the signals in the output netlist with
the Synthesizer's Critical attribute.

architecture x of y is

signal c : std_logic;

--allow Synthesizer to keep the logic
attribute critical of c : signal is true;

-- using attribute property
attribute property of c : signal is "X";

-- adds the value to the instance driving the net

-- using name/value , assume W is attribute type integer
attribute W of c : signal is 100;

-- assume SC is declared as boolean.
attribute SC of c : signal is true;

begin

c <= a or b;

d <= c or d;

....

Netlist ports may be attributed in the same way:

entity x is

port (a,b : std_logic;

d : out std_logic);

end x;

architecture x of y is

signal c : std_logic;

-- using attribute property
attribute property of a : signal is "NODELAY"; -- adds the value to the
port

-- using name/value , assume TNM is attribute type string
attribute TNM of b : signal is "name_list";

100 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

-- assume FAST is declared as boolean.
attribute FAST of d : signal is true;

begin

c <= a or b;

d <= c or d;

....

TR0115 (v1.1) June 10, 2005 101

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Synthesis Coding Issues

Synthesis Coding Issues
A common misconception is that a synthesis compiler 'synthesizes VHDL' - this is incorrect. The tool
synthesizes your design expressed in VHDL.

Understanding the hardware that you are specifying is the simplest rule for success. This is particularly
important for critical timing. Conversely the easiest way to fail is write a model of your design and then
wonder why the synthesis tool didn't 'do the design' for you.

What does synthesize mean in this context? It means to 'transform a logic design specification into an
implementation' - nothing you couldn't do yourself. A synthesis tool simply handles the details of this
transformation for you.

This section contains examples of user coding problems. They are all real user issues, some may be
obvious, others are not.

Test for High Impedance
The following example means 'if sig is floating' - quite a reasonable test to perform in a simulation
model. However, a synthesis tool has to transform this into a hardware element that matches this
behavior.

if sig = 'Z' then -- sig is std_logic

-- do something
end if;

The code specifies a logic cell that looks at the drive of its fan-in then outputs true if not driven, and
false if driven true or false. Such a cell does not exist in most programmable silicon. IEEE 1076.3
specifies that this comparison should always be false, so the statements inside the if are not executed,
and no logic is generated.

Long Signal Paths - Nested ifs
Multiple nested if or elsif clauses can specify long signal paths.

if sig = "000" then
 -- first branch
elsif sig = "001" then
 -- second branch
elsif sig = "010" then
 -- third branch
elsif sig = "011" then
 -- fourth branch
elsif sig = "100" then
 -- fifth branch
else
 -- last branch
end if;

102 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

This code is an inefficient way to describe logic - a case statement would be much better. A good
example is the test for the fourth branch, which depends on three previous tests and describes a long
signal path, with the resulting logic delay.

case sig is

when "000" => -- first branch

when "001" => -- second branch

when "010" => -- third branch

when "011" => -- fourth branch

when "100" => -- fifth branch

when others => -- last branch

end case;

In practice, if the branches contain very little logic, or there are few branches, then there may be little
difference. However, the case statement generally results in a better implementation.

Long Signal Paths - Loops
Loops are very powerful, but each iteration of a loop replicates logic. A variable that is assigned in one
iteration of a loop and used in the next iteration results in a long signal path. This signal path may not
be obvious. An example where a long signal path is the expected behavior might be a carry chain (the
variable c below):

function "+" (a,b:bit_vector)return bit_vector is -- assumes a,b
descending

variable sum : bit_vector (a'length downto 0);

variable c :bit := '0';

begin

for i in a'reverse_range loop

 sum(i) := a(i) xor b(i) xor c;

 c := (a(i) and c) or (b(i) and c) or (a(i) and b(i));

end loop;

sum(a'length) := c;
return sum;

end;

TR0115 (v1.1) June 10, 2005 103

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Simulation-optimized code
It is likely that code written for optimal simulation speed will not be an optimal description of the logic.

In the following example it is assumed that only one control input will be active at a time. The
description is efficient for simulation, but a poor logic description because the independence of the
control signals is not described within the VHDL code.

out1 <= '0';

out2 <= '0';

out3 <= '0';

if in1 = '1' then

out1 <= '1';
elsif in2 = '1' then

out2 <= '1';
elsif in3 = '1' then

out3 <= '1';
end if;

The independence of the control signals needs to be contained within the design description. The
result may be slightly slower simulation, but a smaller logic implementation after synthesis.

out1 <= '0';

out2 <= '0';

out3 <= '0';

if in1 = '1' then

out1 <= '1';
end if;

if in2 = '1' then

out2 <= '1';
end if;

if in3 = '1' then

out3 <= '1';
end if;

Note that the issue is not a long signal path, but an unclear specification of the design. The best
Optimizer in the world can't turn an inefficient algorithm into an efficient one. An algorithm that is
efficient from one viewpoint may not be efficient from another.

104 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Port Mode inout or buffer
Simply an issue of overspecification - Inout specifies bi-directional dataflow, buffer, like out, specifies
unidirectional dataflow. There are very few occasions in hardware design when bi-directional data flow
on a single wire is actually what you want. Use inout when you want to specify a signal path that is
actually routed through a pin, such as a Xilinx IOB or a PLD pin feedback resource.
Users often use inout when they have a logical output they wish to read from, in this case use mode
buffer. This results in a signal path internal to the target device It is not a good idea to use inout on
lower levels of hierarchy when separately compiling each design unit. Doing so may be a problem for
third party linkers. If the design units are compiled at the same time, the implementation will be two
wires, one for data flow in each direction.

Using Simulation Libraries
Compiling simulation models with a synthesis tool is generally understood to be an impractical way to
do hardware design. Such models, even if the Synthesizer will accept them, may be correct designs,
but are rarely good designs.

The same applies to libraries of functions written for simulation. They may be acceptable to the
synthesis tool, but are unlikely to produce good synthesis results. It is critically important that libraries
be tuned for synthesis. This is typically done by keeping the same package interface and modifying
the package body.

Type Conversion Functions
Usually type conversion functions specify no logic, although this is not always the case. Most logic free
functions compile fairly quickly. There is, however, one common exception: a function that performs an
array to integer conversion. For example :

function to_integer (constant arg : bit_vector) return natural is
alias xarg : bit_vector (arg'length -1 downto 0) is arg;

-- normalize direction
variable result : natural := 0;
variable w : natural := 1;

begin
for i in xarg'reverse_range loop

if xarg (i) = '1' then
result := result + w;

end if;
if (i /= xarg'left) then

w := w + w;
end if;

end loop;
return result;

end to_integer;

This function will be slow to compile if arg'length is greater than 16 to 24 bits (depending on your
computer speed/memory). This is the case because one of the "+" operators results in an adder being

TR0115 (v1.1) June 10, 2005 105

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

built for each iteration of the loop (even though the function describes no logic). These adders are
removed on data flow analysis.
One solution to this problem is the use of the array_to_numeric attribute.

Depending on Initial Value
The initial value of a signal or variable is the value specified in the object's declaration (if not specified
there is a default initial value). The initial value of such an object is its value when created. Signals and
variables declared in processes are created at 'time zero'. Variables declared in subprograms are
created when the subprogram is called.

The value at time zero has no clear meaning in the context of synthesis, therefore, the initial value of
signals and process variables must be used with care. This issue does not arise with the initial value of
variables declared in subprograms.

You should not depend on the initial value of signals or process variables if they are not completely
specified in the process in which they are used. In this case, the compiler will ignore the time zero
condition and use the driven value - effectively ignoring the single transition from the time zero state. If
such signals or variables are not assigned, you may reliably use their initial value. Obviously, signals
assigned in another process will never depend upon the initial value. For example :

signal res1 : bit := '0';
begin

process (tmpval,INIT)
begin

if (tmpval = 2**6 -1) then
res1 <= '1';

elsif (INIT ='1') then
res1 <= '1';

end if;
end process;

In this case 'res1' is never assigned low - the code will be synthesized as a pull-up. However during
simulation at time zero, 'res1' starts at '0', makes one transition to '1' and stays there. If this is really the
intent, the solution is to use a flip-flip.

This design probably depends upon a wire floating low at power up, and probably has no realizable
implementation. A solution might be :

process (tmpval,INIT)
begin

if (tmpval = 2**6 -1) then
res1 <= '1';

elsif (INIT ='1') then
res1 <= '1';

else
res1 <= '0'; -- drive it low *****

end if;
end process;

106 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Assign to Array Index
For an assignment such as:

a(b) <= c;

If b is not a constant, then some care should be taken with this expression. This is because the
statement means element 'b' of 'a' gets the value of 'c'; AND all the other elements of 'a' get their
previous value (i.e. are unchanged). In hardware this implies storage of data. If this assignment is not
clocked, combinational feedback paths will be created.

A typical usage might be :

a(b) <= c when rising_edge(clk);

If the assignment is clocked as in the example above (and the clock enable compile option is on), the
element select logic will drive the flip-flop clock enable control for an efficient implementation. However,
an explicit clock enable will override the implicit clock enable. In the following example 'clk_ena' will be
connected to the clock enable control and the select logic will be included in the data path.

if rising_edge(clk) then

if clk_ena = '1' then

a(b) <= c;
end if;

end if;

Don't Care
The semantics of the '-' element of std_logic_1164 are not the same as the semantics of Don't Care in
some PLD programming languages. The '-' in 1164 is a unique element of the nine value type
std_logic, and not a wildcard.

For example, if

a <= "00010"

b <= a = "00---"

then b is never true !

If you wish to ignore comparison on some bits, then be explicit:

b <= a(4 downto 3) = "00";

will produce the desired result.

TR0115 (v1.1) June 10, 2005 107

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Unintended Latches
Latches are inferred using incomplete specification in an if statement. The following example specifies
a latch gated by 'address_strobe', which may not be the intent.

process (address, address_strobe)

begin

if address_strobe = '1' then

decode_signal <= address = "101010";
end if;

end process;

This says, when address_strobe is '0', then decode_signal holds its previous value, resulting in the
latch implementation. In this case the intent is probably to ignore decode_signal when address_strobe
is '0'. However, you need to be explicit.

if address_strobe = '1' then

decode_signal <= address = "101010";
else

decode_signal <= false;
end if;

The log file will contain the name and line number of all inferred elements including (unintended)
latches.

Unintended Combinational Feedback
It is possible to specify unintended combinational feedback paths by using variables (declared in a
process) before they are assigned, or by incomplete specification.

In the following example, if the ReadPtr(i) is never equal to '1', Qint keeps its previous value. It may be
a characteristic of the design that one bit of ReadPtr is always '1', but nothing says this is so. Qint is
incompletely specified and a feedback path exists, which includes Qint when ReadPtr is all zeros.

process (ReadPtr, Fifo)

begin

for i in ReadPtr'range loop

if ReadPtr(i) = '1' then

Qint <= Fifo(i);
end if;

end loop;

end process;

This case is coded for by making certain Qint is always assigned, in which case its value is defaulted to
all zeros, and the unintended feedback path is removed.

108 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

process (ReadPtr, Fifo)

begin

Qint <= (others => '0'); -- because of possible comb feedback

for i in ReadPtr'range loop

if ReadPtr(i) = '1' then

Qint <= Fifo(i);
end if;

end loop;

end process;

The log file will contain the name and line number of all inferred elements, including (unintended)
combinational feedback.

Observe the Register Inference Conventions
Synthesis tools infer storage devices (such as latches and flip flops) from incomplete assignment of
variables or signals. To the other extreme it is possible to specify storage elements that the synthesis
tool won't recognize.

For example:

process (clk1,clk2)

begin

if rising_edge(clk1) then

if rising_edge(clk2) then

q <= d;
end if;

end if;

end process;

This probably describes a flip-flop that loads when its two clocks change at the same instant. It will
function during simulation (because of the discrete nature of simulation time) but no hardware element
has this behavior, and the compiler will report an error.

It is also possible to specify code that has implementable behavior, which one synthesis tool
recognizes and another doesn't. For portable code, keep to the register inference conventions.

TR0115 (v1.1) June 10, 2005 109

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

VHDL Quick Reference
This section contains quick reference information for VHDL syntax presented in an example-based
style. It consists of a partial listing of VHDL constructs, focusing on those that are frequently used for
hardware design. For complete information, refer to the IEEE Standard VHDL Language Reference
Manual (LRM).

Lexical Elements
•

•

•

•

•

•

•

comments from -- to end of line

characters 'a' 'Z' ':'

strings "hi there"

bit strings b"0101" o"05" x"5"

integers 123_456 2E2 2#0101#

identifiers , a letter followed by letters, numbers, or underbar :
hello hello7 h_e_l_l_o

extended identifiers , any characters delimited by backslash (extended identifiers are case
sensitive):
\hello\ \hell____o\ \And\ \7*\

Reserved Words
The following is a list of words that are reserved in standard VHDL (regardless of case) and cannot
serve as user-defined identifiers.

A-H I-P record

abs if register

access impure reject

after in rem

alias inertial report

all inout return

and is rol

architecture ror

array label

assert library select

attribute linkage severity

 literal shared

begin loop signal

block sla

110 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

body map sll

buffer mod sra

bus srl

 nand subtype

case new

component next then

configuration nor to

constant not transport

 null type

disconnect

downto of unaffected

 on units

else open until

elsif or use

end others

entity out variable

exit

 package wait

file port when

for postponed while

function procedure with

 process

generate pure xnor

generic xor

group Q-Z

guarded range

TR0115 (v1.1) June 10, 2005 111

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Declarations and Names
The following code fragments illustrate the syntax of VHDL statements :

Declarations
-- OBJECTS
constant alpha : character := 'a';

variable total : integer ;

variable sum : integer := 0;

signal data_bus : bit_vector (0 to 7);

-- TYPES
type opcodes is (load,store,execute,crash);

type small_int is range 0 to 100;

type big_bus is array (0 to 31) of bit;

type glob is record

first : integer;

second : big_bus;

other_one : character;
end record;

-- SUBTYPES
subtype shorter is integer range 0 to 7;

subtype smaller_int is small_int range 0 to 7;

Names
-- Array element

big_bus(0)

-- Record element

record_name.element

Sequential Statements
The following code fragments illustrate the syntax of VHDL sequential statements :

--IF STATEMENT
if increment and not decrement then

count := count +1;
elsif not increment and decrement then

count := count -1;

112 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

elsif increment and decrement then

count := 0;
else

count := count;
end if;

--CASE STATEMENT
case day is

when Saturday to Sunday =>

work := false;

work_out := false;
when Monday | Wednesday | Friday =>

work := true;

work_out := true;
when others =>

work := true;

work_out := false;
end case;

-- LOOP,NEXT,EXIT STATEMENTS
L1 : for i in 0 to 9 loop

L2 : for j in opcodes loop

for k in 4 downto 2 loop -- loop label is optional

if k = i next L2; -- go to next L2 loop

end loop;

exit L1 when j = crash; -- exit loop L1

end loop;

end loop;

-- WAIT STATEMENT
wait until clk;

-- VARIABLE ASSIGNMENT STATEMENT
var1 := a or b or c;

-- SIGNAL ASSIGNMENT STATEMENT
sig1 <= a or b or c;

TR0115 (v1.1) June 10, 2005 113

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Subprograms
The following code fragments illustrate the syntax of VHDL subprograms :

-- FUNCTION DECLARATION

-- parameters are mode in

-- return statements must return a value
function is_zero (n : integer) return boolean is

-- type, variable,constant,subprogram declarations
begin

-- sequential statements
if n = 0 then

return true;

else

return false;

end if;

end;

-- PROCEDURE DECLARATION

-- parameters may have mode in , out or inout
procedure count (incr : boolean; big : out bit;

num : inout integer) is

-- type, variable,constant,subprogram declarations
begin

-- sequential statements
if incr then

num := num +1;
end if;

if num > 101 then

big := '1';
else

big := '0';
end if;

end;

114 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Concurrent Statements
The following code fragments illustrate the syntax of VHDL concurrent statements :

-- BLOCK STATEMENT

label5 : -- label is required
block

-- type, signal,constant,subprogram declarations
begin

-- concurrent statements
end block;

-- PROCESS STATEMENT , sequential first form

label3 : -- label is optional
process

-- type, variable,constant,subprogram declarations
begin

wait until clock1;

-- sequential statements
end process;

-- PROCESS STATEMENT , sequential second form
process (clk) -- ALL signals that cause the

-- output to change

-- type, variable,constant,subprogram declarations
begin

if clk then

-- sequential statements
local <= en1 and en2;

-- sequential statements
end if;

end process;

-- PROCESS STATEMENT , combinational
process (en1, en2, reset) -- ALL signals used in

-- process

-- type, variable,constant,subprogram declarations

TR0115 (v1.1) June 10, 2005 115

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

begin

-- sequential statements
local <= en1 and en2 and not reset;

-- sequential statements
end process;

-- GENERATE STATEMENT

label4 : -- label required
for i in 0 to 9 generate

-- declarations
begin -- begin is optional if no declarations

-- concurrent statements
label : if i /= 0 generate

-- concurrent statements

sig(i) <= sig(i-1);
end generate;

end generate;

-- COMPONENT INSTANTIATION

-- label is required

-- positional association
U1 : decode port map (instr, rd, wr);

-- named association
U2 : decode port map (r=> rd, op => instr, w=> wr);

-- DIRECT INSTANTIATION

-- label is required

-- positional association
U1 : entity decode port map (instr, rd, wr);

-- named association
U2 : entity decode port map (r=> rd, op => instr, w=> wr);

-- CONDITIONAL SIGNAL ASSIGNMENT

total <= x + y;
sum <= total + 1 when increment else total -1;

116 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

-- SELECTED SIGNAL ASSIGNMENT
with reg_select select

enable <= "0001" when "00",

 "0010" when "01",

 "0100" when "10",

 "1000" when "11";

Library Units
The following code fragments illustrate the syntax of VHDL statements :

-- PACKAGE DECLARATION
package globals is

-- type,constant, signal ,subprogram declarations
end globals;

-- PACKAGE BODY DECLARATION
package body globals is

-- subprogram definitions
end globals;

-- ENTITY DECLARATION
entity decoder is

port (op : opcodes; r,w : out bit);

end decoder;

-- ARCHITECTURE DECLARATION
architecture first_cut of decoder is

-- type, signal,constant,subprogram declarations
begin

-- concurrent statements
end first_cut;

-- CONFIGURATION DECLARATION
configuration example of decoder is

-- configuration
end example;

TR0115 (v1.1) June 10, 2005 117

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

-- LIBRARY CLAUSE

-- makes library , but not its contents visible
library utils;

-- USE CLAUSE
use utils.all;

use utils.utils_pkg.all;

Attributes
ATTRIBUTES DEFINED FOR TYPES
T'base - the base type of T

T'left - left bound of T

T'right - right bound of T

T'high - high bound of T

T'low - low bound of T

T'pos(N) - position number of N in T

T'val(N) - value in T of position N

T'succ(N) - T'val(T'pos(N) +1)

T'pred(N) - T'val(T'pos(n) -1)

T'leftof(N) - T'pred(N) if T is ascending

 - T'succ(N) if T is descending

T'rightof(N) - T'succ(N) if T is ascending

 - T'pred(N) if T id descending

T'image(N) - string representing value of N

T'value(N) - value of string N

ATTRIBUTES DEFINED FOR ARRAYS
A'left(N) - left bound of Nth index of A

A'right(N) - right bound of Nth index of A

A'high(N) - high bound of Nth index of A

A'low(N) - low bound of Nth index of A

A'range(N) - range of Nth index of A

A'reverse_range(N) - reverse range of Nth index of A

A'length(N) - number of values in Nth index of A

A'ascending - true if array range ascending

118 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

ATTRIBUTES DEFINED FOR SIGNALS
S'event - true if an event has just occurred on S

S'stable - true if an event has not just occurred on S

S'last_value - last value of S

STRING ATTRIBUTES
E'simple_name - string "E"

E'path_name - hierarchy path string

E'instance_name - hierarchy and binding string

VHDL Constructs
The following sections provide a partial list of VHDL constructs.

Design Entities and Configurations

Entity Declarations

 Generics

 Ports

Architectures

Configuration Declarations

Subprograms and Packages

Subprogram declarations

Subprogram bodies

Subprogram overloading

Signatures

Operator overloading

Package declarations

Package bodies

Types

Scalar types

 Enumerated types

 Integer types

Composite types

 Array types

 Record types

TR0115 (v1.1) June 10, 2005 119

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Declarations

Type declarations

Subtype declarations

Objects

 Constant declarations

 Signal declarations

 Variable declarations

 Interface declarations

 Alias declarations

Attribute declarations

Component declarations

Group declarations

Specifications

Attribute specifications

Configuration specifications

Names

Simple names

Selected names

Indexed names

Slice names

Attribute names

Expressions

Operators

 Logical operators

 Relational Operators

 Adding operators

 Multiplying operators

 Miscellaneous operators

Operands

 Literals

 Aggregates

 Function calls

 Qualified expressions

 Type conversions

120 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Sequential Statements

Wait statement

Assertion statement

Signal assignment statement

Variable assignment statement

Procedure call statement

If statement

Case statement

Loop statement

Next statement

Exit statement

Return statement

Null statement

Concurrent Statements

Block statement

Process statement

Concurrent Procedure call statement

Concurrent Assertion statement

Concurrent Signal assignment statement

Conditional signal assignment

Selected signal assignment

Component instantiation statement

Generate statement

Visibility

Use clauses

All Lexical Elements

Predefined Language Environment

 Predefined attributes (but not signal attributes except 'event)

 Package STANDARD

TR0115 (v1.1) June 10, 2005 121

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Unsupported Constructs
The following constructs are not supported, their use will result in a Constraint message.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Access types

File types

Signal attributes (except 'event , 'stable,and'last_value)

Textio package

Impure functions

Shared variables

Ignored Constructs
The following constructs are ignored. They may be used in VHDL simulation, but the Synthesizer will
not generate any logic.

Disconnect specifications

Resolution functions

Signal kind register

Waveforms, except the first element value

Constrained Constructs
The following constructs are constrained in their usage. Constrained constructs fall into two classes -
statements constrained in where they may be used, and constrained expressions. The use of a
constrained construct will result in a Constraint message.

Constrained statements
A wait statement may only be first statement in a process.

Signal attributes 'event , 'stable, and 'last_value are valid only in where they specify a clock edge.

Subprograms calls and hierarchy instantiations cannot be recursive.

Formal part of a named association may not be a function call.

All tristate buffers driving an internal tristate bus must be in the same architecture.

A process sensitivity list must contain all signals that the process is sensitive to.

Constrained expressions
Certain expressions must be metalogic expressions, which simply means the value of the expression
must not depend upon a signal (the value of the expression will not vary over time).

Operands of ** must be metalogic expressions.

Assertion statement condition, severity, and message must be metalogic expressions, if the
message is to be reported.

Type and subtype constraint declarations must be metalogic expressions.

Floating point and physical types are constrained to the same values as the equivalent integer type.

While loop and unconstrained loop execution completion must depend only on metalogic
expressions.

122 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Messages

VHDL Synthesis Error Messages
The following error message topics are intended to help you determine the cause of a problem in your
VHDL source file. Each error message produced by the compiler is listed, along with more detailed
explanations and suggested workarounds and tips (recommendations). Words in single quotes will be
substituted in the actual error message. Note that the workarounds listed are only suggestions; it is not
possible for the language compiler to know what you are actually trying to describe with a particular set
of VHDL language statements.

0-series Error Messages

Error Message: $Y0001

Summary
Unexpected end of file.

Description
The Compiler has encountered the end of the source file before reaching the end of the current library
unit (entity, architecture, configuration, package or package body).

Recommendation
Check to make sure that you have not omitted one or more end statements from the source file. Also
check to ensure that the disk file is not corrupt or truncated.

Error Message: $Y0002

Summary
Syntax error near 'operator'.

Description
The Compiler has encountered an unexpected sequence of characters or language tokens. The error
is associated with the indicated VHDL operator.

Recommendation
Check to make sure you are using the operator properly. Also check to make sure there is no other
syntax error on the same line, or on previous lines, that might cause the error.

Check carefully to make sure that you have placed semicolons in their proper locations on previous
lines.

TR0115 (v1.1) June 10, 2005 123

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0003

Summary
Syntax error near 'name'.

Description
The Compiler has encountered an unexpected sequence of language elements. The error is
associated with the indicated identifier name.

Recommendation
Check to make sure you are using the identifier properly. Also check to make sure there is no other
syntax error on the same line, or on previous lines, that might cause the error.

Check carefully to make sure that you have placed semicolons in their proper locations on previous
lines.

Error Message: $Y0004

Summary
Based literal format is incorrect.

Description
The Compiler has encountered a based literal (a literal that has been specified as having a base
between 2 and 16) that does not have a valid format.

Recommendation
Check the syntax of the literal to make sure it conforms to the requirements of the specified number
base.

Error Message: $Y0005

Summary
Unexpected non-graphic character found.

Description
The Compiler has encountered a character that is not a part of the defined VHDL character set.

Recommendation
Check to make sure that the text editor used to create the source file has not placed illegal characters
(such as word processor control codes) into your source file.

124 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0006

Summary
An identifier may not begin with the special character 'character'.

Description
The Compiler has encountered an identifier or other VHDL name that begins with a non-alphabetic
character. Identifiers in VHDL must begin with an upper or lower case letter. Identifiers may not begin
with numbers, underscores, or other special characters.

Recommendation
Check to make sure the identifier conforms to the VHDL requirements for identifier names.

Also check to make sure you have not misplaced an operator or other special character.

Error Message: $Y0007

Summary
Unable to open file 'name'.

Description
The Compiler has encountered an error when attempting to open the indicated file.

Recommendation
Check to ensure that the indicated filename is correctly spelled and exists in the current directory or the
directory indicated in the file path.

Error Message: $Y0008

Summary
A 'name' must not contain a new line character.

Description
The Compiler has encountered a new line character in a quoted string or an extended name. Strings
and extended identifiers in VHDL must not contain new line characters.

Recommendation
Check to make sure that you have placed a terminating quote character on the end of the string, or
terminating backslash on an extended name. For readability in your editor you may prefer shorter
strings, in this case use the concatenation operator (&) to break the string into multiple parts on
multiple lines.

TR0115 (v1.1) June 10, 2005 125

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0009

Summary
A 'name' must not contain a CR character.

Description
The Compiler has encountered a carriage return character in a quoted string or extended identifier.
Strings and extended identifiers in VHDL must not contain CR characters.

Recommendation
Check to make sure that you have placed a terminating quote character on the end of the string. If the
string is too long to enter on one line, use the concatenation operator (&) to break the string into
multiple parts on multiple lines. If you require that a carriage return character be embedded in the
string, use the syntax:

'string1' & CR & 'string 2'

to concatenate two sub-strings with a carriage return character.

Error Message: $Y0010

Summary
A 'name' must not contain a non-graphic character.

Description
The Compiler has encountered an illegal character in a quoted string or extended identifier.

Recommendation
Check to make sure that the string or extended identifier indicated contains only valid VHDL
characters. If the string or extended identifier appears to include only valid characters, check to make
sure your text editor or word processor has not inserted illegal non-graphic characters.

Error Message: $Y0011

Summary
A bit string must not contain a new line character.

Description
The Compiler has encountered a new line character in a bit string. Binary bit strings must consist only
of the characters '0', '1' and '_'. Octal bit strings must consist only of the characters '0' to '7' and '_'.
Hexadecimal bit strings must consist only of the characters '0' to 'f' and '_'.

Recommendation
Check to make sure that you have placed a terminating quote character on the end of the bit string.

126 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0012

Summary
Bit string delimiters do not match.

Description
The Compiler has encountered an unexpected character at the end of a bit string.

Recommendation
Check to make sure that you have used the same character delimiter at the beginning and end of the
bit string. If you have used the replacement character '%' in the bit string, make sure that the same
replacement character is used as both the first and second delimiter.

Error Message: $Y0013

Summary
Illegal binary value 'character' in bit string.

Description
The Compiler has encountered an unexpected character while reading a bit string. The Compiler has
encountered an invalid binary format bit string. Binary bit strings must include only the characters '0'
through '1', and the special character '_'.

Recommendation
Check to make sure that the bit string is in a valid binary number format, or change the base
specification to reflect the format used.

Error Message: $Y0014

Summary
A Bit string must not have '_' as its first element.

Description
The Compiler has encountered an illegal use of the special character '_' in a bit string. The '_' character
may not be used as the first or last character in a bit string.

Recommendation
Check to make sure that the bit string does not begin with a '_' character.

TR0115 (v1.1) June 10, 2005 127

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0015

Summary
A bit string must not contain consecutive under bars '__'.

Description
The Compiler has encountered an illegal use of the special character '_' in a bit string. The '_' character
can only be used to provide separation between numeric characters in a bit string and must be entered
as a single character.

Recommendation
Check to make sure that the bit string does not include extraneous '_' characters.

Error Message: $Y0016

Summary
A bit string must not have '_' as its last element.

Description
The Compiler has encountered an illegal use of the special character '_' in a bit string. The '_' character
can only be used to provide separation between numeric characters in a bit string. The '_' character
may not be used as the first or last character in a bit string.

Recommendation
Check to make sure that the bit string does not end with an extraneous '_' character.

Error Message: $Y0017

Summary
Illegal octal value 'character' in bit string.

Description
The Compiler has encountered an invalid octal format bit string. Octal bit strings must include only the
characters '0' through '7' and the special character '_'.

Recommendation
Check to make sure that the bit string is in a valid octal number format, or change the base
specification to reflect the format used.

128 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0018

Summary
Illegal hex value 'character' in bit string.

Description
The Compiler has encountered an invalid hexadecimal format bit string. Hexadecimal bit strings must
include only the characters '0' through '9', 'A' through 'F', 'a' through 'f,' and the special character '_'.

Recommendation
Check to make sure that the bit string is in a valid hexadecimal number format, or change the base
specification to reflect the format used.

Error Message: $Y0019

Summary
Based literal contains illegal character 'character'.

Description
The Compiler has encountered an invalid based numeric literal. Numeric literals entered in non-decimal
format must include only the characters appropriate for the base specification. (e.g. '0' through '7' and
the special character '_' if the base specifier is 8).

Recommendation
Check to make sure that the based numeric literal is in a valid numeric format that matches the base
specification.

Error Message: $Y0020

Summary
Literal Base must not be greater than 16.

Description
The Compiler has encountered an invalid based numeric literal. The literal base specification must be
in the range of 2 to 16.

Recommendation
Check to make sure that the literal has a valid base specification.

TR0115 (v1.1) June 10, 2005 129

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0021

Summary
Literal Base must not be less than 2.

Description
The Compiler has encountered an invalid based numeric literal. The literal base specification must be
in the range of 2 to 16.

Recommendation
Check to make sure that the literal has a valid base specification.

Error Message: $Y0022

Summary
Illegal literal format, missing 'E'.

Description
The Compiler has encountered a floating point literal that is incorrectly specified.

Recommendation
Check to make sure that the floating point literal is specified correctly. (Note, however, that floating
point numbers are only supported as integers during synthesis. The fractional part of a floating point
number will be truncated).

Error Message: $Y0023

Summary
A number must not contain '_character'.

Description
The Compiler has encountered an invalid sequence of characters in a numeric literal. Numeric literals
may include '_' (underscore) characters to improve readability, but must not include other, non-numeric
characters. (Values entered in hexadecimal format may also include the characters 'A' through 'F' or 'a'
through 'f').

Recommendation
Check to make sure that there are no invalid characters used in the numeric literal and that the '_'
character is used properly.

130 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0024

Summary
A number must not have 'character' as its last character.

Description
The Compiler has encountered an invalid character at the end of a numeric literal.

Recommendation
Check to make sure that there are no missing or additional delimiters (such as white space or new line)
at the end of the number.

Error Message: $Y0025

Summary
An identifier may not contain consecutive under bars '__'.

Description
The Compiler has encountered an invalid sequence of characters in an identifier. Identifiers may
include '_' (underscore) characters to improve readability, but they must not be used consecutively.

Recommendation
Check to make sure there are no extraneous consecutive '_' characters in the identifier.

Error Message: $Y0026

Summary
An identifier may not contain a 'character'.

Description
The Compiler has encountered an invalid character in an identifier. Identifiers may consist of letters,
digits, and '_' (underscore) characters but must not include other special or non-graphic characters.

Recommendation
Check to make sure that there are no invalid characters used in the identifier. Also consider using the
extended identifier syntax; an extended identifier may contain any graphic character. Extended
identifiers have a backslash (\) as their first and last character. Also note that extended identifiers are
case sensitive.

TR0115 (v1.1) June 10, 2005 131

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0027

Summary
An identifier may not have '_' as its last character.

Description
The Compiler has encountered an invalid sequence of characters in an identifier. Identifiers may
include '_' (underscore) characters to improve readability, but the '_' character must not be used as the
first or last character in the identifier.

Recommendation
Check to make sure that the '_' character is not used as the last character in the identifier.

Error Message: $Y0028

Summary
A character literal must not contain a non-graphic character.

Description
The Compiler has encountered a quoted character that is not a graphic character.

Recommendation
Check to make sure that the text editor you have used to create the source file has not placed illegal
characters (such as word processor control codes) into your source file.

Error Message: $Y0029

Summary
'mm': unknown command option 'name'.

Description
The Compiler software has been invoked with an unknown command option.

Recommendation
Check the Compiler documentation for information about compiler options and option formats.

132 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0030

Summary
Unable to create a temporary file.

Description
The Compiler has encountered a system error while attempting to write a file to the disk.

Recommendation
Check to make sure that you have sufficient space on the disk. Also check to make sure the disk drive
is not write protected or a read-only device. If you have a networked system, check to ensure that you
have adequate network privileges.

Error Message: $Y0031

Summary
Unable to open a temporary file.

Description
The Compiler has encountered a system error while attempting to open an existing temporary file.

Recommendation
Check to make sure the disk drive or network directory is available. If you have a networked system,
check to make sure that you have adequate network privileges.

Error Message: $Y0032

Summary
Unable to write to a temporary file.

Description
The Compiler has encountered a system error while attempting to write a file to the disk.

Recommendation
Check to make sure that you have sufficient space on the disk. Also check to make sure the disk drive
is not write protected or a read-only device. If you have a networked system, check to ensure that you
have adequate network privileges.

TR0115 (v1.1) June 10, 2005 133

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0033

Summary
Out of memory.

Description
The Compiler has encountered a system error while attempting to allocate memory.

Recommendation
Synthesis software can require large amounts of memory, depending on the size of the design. Check
your design to ensure that you have not described a circuit that is impractical to synthesize (such as
one that includes very large array or integer ranges, or describes complex mathematical functions).

Also check to ensure that your system has adequate physical memory and that there is enough free
memory to run the synthesis software.

If your design is very large, you should consider partitioning it into multiple, smaller design modules
and synthesize those modules independently.

Error Message: $Y0034

Summary
Disk is full.

Description
The Compiler has encountered a system error when attempting to write a file to the disk.

Recommendation
Check to make sure that you have adequate disk space.

Error Message: $Y0035

Summary
Software security protection check failed.

Description
The Compiler was unable to find the software security device.

Recommendation
Check to make sure that the software security device is connected properly before running the
software.

134 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0036

Summary
Design too large for Demonstration version.

Description
The Compiler is operating in demonstration mode. In this mode, you are restricted in the size of design
that can be processed.

Recommendation
Check to make sure that the number of semicolons in your design is within the restriction imposed by
the demonstration version. If you are not intending to run the software in demonstration mode, check to
ensure that the software security device is properly attached.

Error Message: $Y0082

Summary
Unable find package 'standard' in the file std.vhd.

Description
The Compiler has encountered a problem in the standard library file, std.vhd.

Recommendation
Check to make sure the std.vhd file has not become corrupted. If necessary, re-install the std.vhd
file from the installation disk.

Error Message: $Y0083

Summary
Entity 'name' does not exist in the design.

Description
The Compiler was unable to find the indicated entity in the specified input source files.

Recommendation
Check to make sure that you have specified the top-level entity correctly. Check also to make sure you
have specified all necessary source files and that the desired top-level entity exists.

TR0115 (v1.1) June 10, 2005 135

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0084

Summary
Architecture 'name' does not exist in the design.

Description
The Compiler was unable to find the indicated architecture in the specified input source files.

Recommendation
Check to make sure that you have specified the top-level architecture correctly.

Also check to make sure you have specified all necessary source files and that the desired top-level
architecture exists.

Error Message: $Y0085

Summary
Input file and output file have the same name.

Description
The Compiler has determined that the input and output file names you have specified are the same.

Recommendation
Check to make sure that you have specified the correct file names for input and output files and check
to make sure you have specified the correct file name extensions.

Error Message: $Y0086

Summary
Incorrect version of library STD.

Description
The Compiler has encountered a problem in the standard library file, std.vhd. The version of the file
is not correct.

Recommendation
Check to make sure the std.vhd file has not become corrupted. If necessary, re-install the std.vhd
file from the installation disk.
Also check to make sure you do not have an old version of std.vhd somewhere on your path, or in
your project directory.

136 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0087

Summary
Incorrect version of library METAMOR.

Description
The Compiler has encountered a problem in the standard library file, metamor.vhd. The version of the
file is not correct.

Recommendation
Check to make sure the metamor.vhd file has not become corrupted. If necessary, re-install the
metamor.vhd file from the installation disk.

Also check to make sure you do not have an old version of metamor.vhd somewhere on your path, or
in your project directory.

Error Message: $Y0088

Summary
Install error, file 'name' is missing.

Description
The Compiler has encountered a missing file, this file is part of the software and must be present.

Recommendation
If the directory containing the file is on a networked drive, check that the drive is shared. Once you
verify that the file is missing, re-install the software.

Error Message: $Y0089

Summary
Install error, file 'name' is incorrect version.

Description
The Compiler has encountered a file that is part of the software but is from another version of the
software. This file is incompatible and must be replaced.

Recommendation
Re-install the software.

TR0115 (v1.1) June 10, 2005 137

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

100-series Error Messages

Error Message: $Y0100

Summary
A description 'name' is used in an expression as a primary, expected a signal, a variable, or a constant.

Description
The Compiler has encountered a primary expression element that is not a legal as part of an
expression. An object of class signal, variable or constant was required. These objects include signals,
variables, constants, generics, enumerated type elements, functions and attribute values.

Recommendation
Check to make sure that you have correctly specified the expression.

Also check to make sure the indicated name has been declared and is not hidden by another
declaration.

Error Message: $Y0101

Summary
'name' has not been declared as a 'description'.

Description
The Compiler has encountered a component instantiation that does not reference a known component,
entity or configuration.

Recommendation
Check to make sure that you have provided a component declaration for the indicated component.
If the component declaration exists in a package, make sure you have provided the necessary use
statement to make the contents of that package visible. If this is a direct instantiation, check that the
keywords entity or configuration are not missing.

Error Message: $Y0102

Summary
Mode conflict associating actual 'name' with formal 'name'.

Description
The Compiler has determined that the mode (direction) of the actual parameter indicated is not
compatible with the mode of the formal parameter.
For example, you cannot connect an actual that is itself an out port, to a formal that is an inout port.

Recommendation
Check to make sure that the mode specified in the component declaration is compatible with the mode
of the actual parameter.

138 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Check to make sure the mode on the component declaration is the same as the mode on its entity port
declaration.

Also check to make sure you have associated the actual parameters to formal parameters as
expected. A mode conflict is actually an electrical rules check and usually indicates a design error. It is
often possible to work around this error using a temporary signal as the actual.

Error Message: $Y0103

Summary
No actual is specified for generic 'name'.

Description
The Compiler has encountered an incomplete generic mapping. The actual generic value is missing in
the generic map.

Recommendation
Check to make sure that all required generic parameters have been specified, or add a default value to
the declaration of this generic.

Error Message: $Y0104

Summary
Port 'name' has mode IN, is unconnected and has no explicit default value.

Description
The Compiler has determined that the indicated port of an entity has been left unspecified or specified
as open. Input ports that do not have default values must be connected.

Recommendation
Check to make sure that all necessary input ports have been specified with actual parameters, or add
default values to those ports that will be left unconnected.

Error Message: $Y0105

Summary
Port 'name' has mode description has a type that is unconstrained and may not be unconnected.

Description
The Compiler has encountered a port mapping that is invalid, due to the use of a formal port that has
an unconstrained array type. All ports that have unconstrained types must be connected.

Recommendation
Check to make sure that you have described the intended port mapping and have not inadvertently
omitted one or more ports from the port map or specified this port as open.

TR0115 (v1.1) June 10, 2005 139

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0106

Summary
Block specification must be an Architecture, Block label, or Generate label.

Description
The Compiler has encountered a configuration that references an invalid design unit type or other
unknown label.

Recommendation
Check to make sure that the block specification in the configuration specifies a valid architecture, block
label or generate label.

Error Message: $Y0107

Summary
'name' is not an Entity.

Description
The Compiler expected an entity name in a direct instantiation of an entity or in a configuration
statement, but has instead encountered an identifier that is not a known entity name, or that has been
declared as some other type of design unit or object.

Recommendation
Check to make sure that you have entered the name of the entity correctly.

Also check to make sure you have not used the same name to identify a local signal or other object
and that the entity is made visible with a use statement or with a selected name such as work.entity.

Error Message: $Y0108

Summary
'name' is not a Type or Subtype.

Description
The Compiler expected a type or subtype name, but has instead encountered an identifier that is not a
type or subtype.

Recommendation
Check to make sure the type or subtype has been entered properly.

Also check to make sure the type or subtype has been declared correctly and is visible in the current
region of the design. If the type or subtype declaration was made within a package, make sure you
have provided the appropriate use statement to make that declaration visible.

140 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0109

Summary
A Return statement in a procedure must not return an expression.

Description
The Compiler has encountered a return statement within a procedure that includes a return value.
Return values are not allowed in procedures.

Recommendation
Check to make sure that a procedure is what you really intended to create. If you need to return values
from a procedure, you will need to use procedure parameters of mode out or inout, or replace the
procedure with a function.

Error Message: $Y0110

Summary
A Return statement in a function must return an expression.

Description
The Compiler has encountered a return statement within a function that does not specify a return
value. Functions must be provided with return values at all possible exit points.

Recommendation
Check to make sure that all return statements within the function have valid return values.

Error Message: $Y0111

Summary
Operator function has too few parameters.

Description
The Compiler has encountered an operator function (overloaded operator) that does not have the
required number of parameters for the specified operator.

Recommendation
Check to make sure that the number of function parameters matches the requirements of the specified
operator.

TR0115 (v1.1) June 10, 2005 141

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0112

Summary
Operator function has too many parameters.

Description
The Compiler has encountered an operator function (overloaded operator) that does not have the
required number of parameters for the specified operator.

Recommendation
Check to make sure that the number of function parameters matches the requirements of the specified
operator.

Error Message: $Y0113

Summary
Cannot type convert a NULL, an aggregate, or a string literal.

Description
The Compiler has encountered a type conversion that is invalid. Explicit type conversions are only
allowed between closely related types, such as between arrays with the same dimensions. Explicit type
conversions are not allowed for a null, aggregate or string literals.

Recommendation
Check to make sure that the explicit type conversion is being used for closely related types, or use a
type conversion function.

Error Message: $Y0114

Summary
'name' has no Architecture named 'name'.

Description
The compiler was unable to find the specified architecture name.

Recommendation
Check to make sure that the correct architecture name has been used.

Also check to ensure that the specified architecture exists in the design source files.

142 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0115

Summary
'name' is already declared as a description.

Description
The Compiler has encountered a duplicate declaration for the indicated identifier name.

Recommendation
Check to make sure that you are specifying the correct identifier name and that the name is unique in
this declarative region.

Remove one of the duplicate declarations.

Error Message: $Y0116

Summary
Name at end of 'description' does not match 'description' name.

Description
The Compiler has encountered a mismatched name at the end of a design unit, subprogram or other
end-terminated section of the design.

Recommendation
Check to make sure that you have used the correct name at the end of the section.
Also check to make sure that you have not omitted one or more end statements.

Error Message: $Y0117

Summary
Block configuration must be an Architecture.

Description
The Compiler has encountered an invalid binding of a block with an architecture in a configuration
statement or declaration.

Recommendation
Check to make sure that the name specified in the block configuration is an architecture and that the
architecture specified exists in the design.

TR0115 (v1.1) June 10, 2005 143

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0119

Summary
Unable to determine the range of a non-scalar type.

Description
The Compiler has encountered a problem when attempting to determine the range of a non-scalar
(composite) data type such as a record that has no range.

Recommendation
Check to make sure that a range is actually needed, or rewrite the design so that a scalar data type is
used.

Error Message: $Y0120

Summary
Illegal subtype constraint.

Description
The Compiler has encountered a subtype declaration or usage that is illegal, due to an incorrect
constraint specification. The constraint (such as a range specifier) must match the requirements of the
base type.

Recommendation
Check to make sure that the subtype and base type are compatible with the constraint specified.

Error Message: $Y0121

Summary
'name' is not an array.

Description
The Compiler expected an array object or literal.

Recommendation
Check to make sure that the object or literal you are specifying is an array type.

144 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0123

Summary
Attempt to select element of an object whose type is not a record.

Description
The Compiler has encountered an invalid use of a record field specifier. The object referenced in the
statement is not a record type.

Recommendation
Check to make sure that the object you are specifying is a record type of object. If you did not intend to
specify a record field, check to make sure you have not inadvertently used a '.' operator or other
record-related syntax.

Error Message: $Y0124

Summary
'name' does not conform to declaration in package.

Description
The Compiler has encountered an invalid declaration in a package body. The declaration for the
indicated name must match the declaration in the corresponding package.

Recommendation
Check to make sure that you have specified the declaration properly in the package body. If the
declaration is for a subprogram, check to make sure the parameters are correctly specified and have
matching class, mode, type and names.

Also check to make sure the specified identifier has been properly declared (as a prototype) in the
package.

Error Message: $Y0125

Summary
'name' is not a Physical Unit.

Description
The Compiler has encountered an apparent use of a physical type literal that does not specify a valid
physical type unit.

Recommendation
Check to make sure that the physical type definition includes the physical unit you have specified. If
you did not intend to specify a physical type literal, check to make sure you have not inadvertently
omitted an operator or other language element from the statement.

TR0115 (v1.1) June 10, 2005 145

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0126

Summary
description 'name' may not be a prefix for .ALL.

Description
The Compiler has encountered a .all specification (such as in a use statement) that is not valid. The
.all keyword may only be prefixed with a package, library, entity or architecture.

Recommendation
Check to make sure that you have specified a valid package, library, entity or architecture name in the
statement.

Error Message: $Y0127

Summary
Physical unit prefix must be a number.

Description
The Compiler has encountered an apparent use of a physical type literal that does not specify a valid
physical type prefix value. Physical type prefix values must be numbers.

Recommendation
Check to make sure that the physical type definition includes a valid numeric prefix. If you did not
intend to specify a physical type literal, check to make sure you have not inadvertently omitted an
operator or other language element from the statement.

Error Message: $Y0128

Summary
Range is not within the range of the base type.

Description
The Compiler has encountered an invalid specification of a range. Range specifications must specify
ranges of values that are within the range of the specified base type.

Recommendation
Check to make sure that the correct base type has been referenced and check to make sure that the
range specified falls within the range of the base type.

146 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0129

Summary
Illegal NULL in expression, NULL must be in a simple assignment.

Description
The Compiler has encountered an illegal use of NULL. When used as a value, NULL may only be used
in the right hand side of a simple assignment and may not appear within an expression.

Recommendation
Check to make sure that NULL was really intended in the expression. You may be able to simplify the
expression to a simple assignment by using a selected assignment or similar statement.

Error Message: $Y0130

Summary
Others must be the last choice in a selected signal assignment.

Description
The Compiler has encountered an illegal use of the choice others. Others is only allowed as the last
choice in a series of choices.

Recommendation
Check to make sure that the others choice is at the end of the series of choices.

Error Message: $Y0131

Summary
Others must be the last choice in a case statement.

Description
The Compiler has encountered an illegal use of the choice others. Others is only allowed as the last
choice in a case statement.

Recommendation
Check to make sure that the others choice is at the end of the case statement.

TR0115 (v1.1) June 10, 2005 147

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0132

Summary
Others must be the only choice in a selected alternative.

Description
The Compiler has encountered an illegal use of the choice others, it may not be or'd with another
choice. For example, a case of the following form is illegal:

when '000' | others =>

Recommendation
Check to make sure that the others choice is the only choice in the selected alternative. You can
probably remove the or'd choice.

Error Message: $Y0133

Summary
Others must be the only choice in a case alternative.

Description
The Compiler has encountered an illegal use of the choice others, it may not be or'd with another
choice. For example, a case of the following form is illegal:

when '000' | others =>

Recommendation
Check to make sure that the others choice is the only choice in the case alternative.

Error Message: $Y0134

Summary
The label at the end of the 'description' does not match 'description' label.

Description
The Compiler has encountered an end statement that references a concurrent statement label other
than expected.

Recommendation
Check to make sure that you have terminated the concurrent statement with the correct label.

148 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0135

Summary
An Exit statement must be within a loop statement.

Description
The Compiler has encountered an incorrect use of the exit statement. Exit is used to terminate
execution of a loop and must be used within a loop.

Recommendation
Check to make sure that the exit statement is being used within a loop.

Also check to make sure you have not inadvertently terminated the loop prior to the exit statement with
a misplaced end statement.

Error Message: $Y0136

Summary
An Exit statement specifies a label that is not a Loop label.

Description
The Compiler has encountered an exit statement that specifies an invalid loop label.

Recommendation
Check to make sure that the optional loop label has been correctly specified.
Check to make sure the loop (or loops) in which the exit statement is being used are correctly labeled.

Error Message: $Y0137

Summary
A Next statement specifies a label that is not a Loop label.

Description
The Compiler has encountered a next statement that specifies an invalid loop label.

Recommendation
Check to make sure that the optional loop label has been correctly specified.
Check to make sure the loop (or loops) in which the next statement is being used are correctly labeled.

TR0115 (v1.1) June 10, 2005 149

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0138

Summary
A Return statement must be within a Function or Procedure.

Description
The Compiler has encountered a return statement that is not within a function or procedure
(subprogram). Return statements are used to exit from a subprogram and must not be used outside of
a subprogram.

Recommendation
Check to make sure that the return statement is being properly used within a function or procedure.

Error Message: $Y0139

Summary
A passive process may not contain a signal assignment.

Description
The Compiler has encountered a process that is passive (such as one entered in the entity declaration)
and has one or more signal assignments.

Recommendation
Check to make sure the process has been entered in the desired location of the source file. If the
process is not intended to be passive, it must be located within an architecture declaration.

Error Message: $Y0140

Summary
Process has a sensitivity list and a wait statement.

Description
The Compiler has encountered a wait statement being used in a process that includes a sensitivity list.
A process may not include both a wait statement and a sensitivity list.

Recommendation
Check the design requirements to determine if a sensitivity list is required. If you are creating a design
intended for synthesis, you should consider using the sensitivity list in conjunction with appropriate
conditional logic to define the behavior of the circuit. Remove either the sensitivity list or the wait
statement to correct the problem.

150 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0141

Summary
Illegal NULL in concurrent signal assignment.

Description
The Compiler has encountered an illegal assignment to NULL in a concurrent signal assignment.
VHDL does not allow assignments of NULL in concurrent signal assignments.

Recommendation
Check to make sure that you really need to assign the signal to NULL. If you are attempting to describe
an output enable, you should use the std_logic data type and assign the signal a value of 'Z', rather
than NULL. If you require an assignment of NULL, modify the design so that the assignment is
performed within a process or subprogram.

Error Message: $Y0142

Summary
Missing block guard expression or signal 'guard'.

Description
The Compiler has encountered an invalid or incomplete specification of a guarded assignment. A
guarded assignment requires either a guarded block or implicit or explicit signal guard.

Recommendation
Check to make sure that a guard expression or the implicit signal guard has been specified for the
guarded block. If guard is not an implicit signal, check to make sure it has been properly declared as a
Boolean type.

Error Message: $Y0143

Summary
'guard' is not a signal.

Description
The Compiler has encountered an invalid use of the signal guard. Guard is not an implicit signal in this
context and is not declared as a Boolean-type signal.

Recommendation
Check to make sure that you have not specified the wrong signal name.

Also check to make sure you have correctly declared the explicit guard signal.

TR0115 (v1.1) June 10, 2005 151

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0144

Summary
Signal 'guard' is not type 'boolean'.

Description
The Compiler has encountered an invalid use of the special signal guard. The condition expression of
the guarded block does not evaluate to a Boolean result, or guard has been declared as a non-Boolean
type.

Recommendation
Check to make sure that the condition expression evaluates to a Boolean result. If guard is explicitly
declared and used in a guarded signal assignment, it must be declared as a Boolean.

Error Message: $Y0145

Summary
Target of un-guarded assignment is guarded.

Description
The Compiler has encountered an inconsistent use of a guarded assignment. The target of an
assignment is guarded, but the guarded keyword has not been specified.

Recommendation
Check to make sure that you have specified the guarded keyword for all assignments to guarded
signals.

Error Message: $Y0146

Summary
'name' is not a Procedure.

Description
The Compiler expected to encounter a procedure name, but the name specified is not a procedure.

Recommendation
Check to make sure that you have correctly entered the procedure name with the correct number of
arguments, each of the correct type.

Also check to make sure there is no other local declaration that hides the procedure declaration and
that the procedure declaration is visible in the current region of the design.

152 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0147

Summary
Positional association must not follow named association.

Description
The Compiler has encountered an incorrect use of a port mapping or subprogram arguments. When
positional association is used in combination with named association, the positional associations must
be specified prior to any named associations.

Recommendation
Check to make sure that the ports have been specified in the correct order.

Also check to make sure you have not inadvertently omitted one or more named associations.

Error Message: $Y0148

Summary
Attribute 'name has not been declared.

Description
The compiler has encountered an attribute name that has not been declared.

Recommendation
Check to make sure that the attribute has been properly declared. If the attribute declaration is in a
package, make sure the package has been properly loaded from the library and make sure the
package contents have been made visible with a use statement.

Error Message: $Y0149

Summary
Attribute not defined for this object.

Description
The Compiler has encountered an attribute use that is not defined for the object the attribute is being
applied to.

Recommendation
Check to make sure that the attribute has been defined for the type of the object. Use a type
conversion, if necessary, to convert the object to the correct data type, or use an attribute that has
been declared for the data type.

TR0115 (v1.1) June 10, 2005 153

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0150

Summary
Prefix for attribute 'base must be a type or subtype.

Description
The Compiler has encountered an invalid use of the predefined attribute 'base. The 'base attribute is
used to find the base type for a subtype and so must only be applied to a type or subtype.

Recommendation
Check to make sure that the type specified is a subtype.

Error Message: $Y0151

Summary
Attribute 'attribute must not have a parameter.

Description
The Compiler has encountered an invalid use of a predefined attribute. The indicated attribute must not
have a parameter.

Recommendation
Check to make sure that you are using the correct attribute.

Error Message: $Y0152

Summary
Attribute 'base must be the prefix of another attribute.

Description
The Compiler has encountered an incorrect use of the predefined 'base attribute.

Recommendation
'Base must be used in conjunction with another attribute, such as 'left, 'right, 'high, or 'low.

Check to make sure that you are using the attribute correctly.

154 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0153

Summary
Attribute 'attribute may not have a parameter if the prefix is a scalar type.

Description
The Compiler has encountered a predefined attribute being used incorrectly with a parameter. The
indicated attribute may not include an attribute parameter when used with scalar types.

Recommendation
Check to make sure that the attribute is being used correctly.

Error Message: $Y0154

Summary
Prefix of attribute 'attribute must be a discrete type.

Description
The Compiler has encountered a predefined attribute being used incorrectly. The indicated attribute
requires a prefix that is a discrete type (an enumeration type or integer).

Recommendation
Check to make sure that the attribute is being used correctly and that the prefix is an enumeration type
or integer.

Error Message: $Y0155

Summary
Attribute 'attribute must have a parameter.

Description
The Compiler has encountered an invalid use of a predefined attribute. The indicated attribute requires
a parameter.

Recommendation
Check to make sure that you are using the correct attribute. Add an attribute parameter if necessary.

TR0115 (v1.1) June 10, 2005 155

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0157

Summary
Signal attribute prefix is not a signal.

Description
The Compiler has encountered a predefined attribute being used incorrectly. The indicated attribute
requires a prefix that is a signal identifier.

Recommendation
Check to make sure that the attribute is being used correctly and that the prefix is a signal identifier.

Note that most signal attributes are not supported for synthesis.

Error Message: $Y0158

Summary
In an aggregate, positional associations must occur before named associations.

Description
The Compiler has encountered an incorrect use of an aggregate. When positional association is used
in combination with named association, the positional associations must be specified prior to any
named associations.

Recommendation
Check to make sure that the elements of the aggregate have been specified in the correct order. Also
check to make sure you have not inadvertently omitted one or more named associations.

Error Message: $Y0159

Summary
Choice Others must only occur once in an aggregate.

Description
The Compiler has encountered more than one use of the others choice in an aggregate. Others may
only be used once to define the default assignment in a aggregate.

Recommendation
Check to make sure that you have only provided one others choice in the aggregate.

156 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0160

Summary
Choice Others must be last element of an aggregate.

Description
The Compiler has encountered an invalid use of the others choice in an aggregate. Others may only
be used once to define the default assignment in a aggregate and must be the last element in the
aggregate.

Recommendation
Check to make sure that you have only provided one others choice in the aggregate and that it is the
last choice.

Error Message: $Y0161

Summary
Choice Others must be the only choice in an aggregate element association.

Description
The Compiler has encountered an illegal use of the choice others - it may not be or'd with another
choice. For example, a case of the following form is illegal:

when 7 | others =>

Recommendation
Check to make sure that the others choice is the only choice in the selected alternative. You can
probably remove the or'd choice.

Error Message: $Y0162

Summary
Unable to 'action' library file 'name'.

Description
The Compiler was unable to perform an action (read or write) on the specified library file.

Recommendation
For read, check to make sure the library file exists and is located in the current working directory, in the
library directory, or is correctly specified in the list of files in a library alias.

For write of a compiled library file, check to make sure you have write privileges in the specified
directory.

TR0115 (v1.1) June 10, 2005 157

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0163

Summary
'name' is a 'description' and not a 'description'.

Description
The Compiler has encountered an unexpected use of the indicated identifier.

Recommendation
Check to make sure that the identifier has been entered correctly and is the expected type of object,
design unit, loop, block, or subprogram.

Error Message: $Y0164

Summary
'name' is not a user defined attribute.

Description
The Compiler has encountered an invalid use of the indicated identifier. The name used is not declared
as a user defined attribute.

Recommendation
Check to make sure that the attribute name has been correctly entered. If an attribute was not
intended, check to make sure the ' (single quote) character has not been incorrectly used.

Error Message: $Y0165

Summary
Subtype has more dimensions than base type.

Description
The Compiler has encountered an invalid specification of a subtype. Array subtype declarations must
specify ranges of values that are within the range of the specified base type and must have the same
number of array dimensions.

Recommendation
Check to make sure that the correct base type has been referenced and that the dimensions of the
subtype are compatible with the range of the base type.

158 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0166

Summary
Subtype index is incompatible with base type index.

Description
The Compiler has encountered an invalid specification of a subtype. An array subtype index must
specify a value that is within the range of the specified base type.

Recommendation
Check to make sure that the correct base type has been referenced and that the index of the subtype
is compatible with the range of the base type.

Error Message: $Y0167

Summary
Base type of subtype must not be a record.

Description
The Compiler has encountered an invalid specification of a subtype. The base type of a subtype may
not be a record.

Recommendation
Check to make sure that the correct base type has been referenced, and that the base type is not a
record type.

Error Message: $Y0168

Summary
Base type for index constraint must be an array.

Description
The Compiler has encountered an invalid specification of an index constraint. An array index constraint
may only be used when the base type is an array.

Recommendation
Check to make sure that the correct base type has been referenced.

TR0115 (v1.1) June 10, 2005 159

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0169

Summary
Base type of subtype must be an unconstrained array.

Description
The Compiler has encountered an invalid specification of an unconstrained array subtype. The base
type of a subtype must be an unconstrained array.

Recommendation
Check to make sure that the correct base type has been referenced, or constrain the array subtype
with a valid range.

Error Message: $Y0170

Summary
'name' was declared outside of the function in which it is used.

Description
The Compiler has encountered an object being referenced within a function, but that object was not
declared within the function.

Recommendation
Check to make sure that you are referencing an object that is local to the function, or has been passed
into the function via the parameter list.

Error Message: $Y0171

Summary
A function may not contain a wait statement.

Description
The Compiler has encountered a wait statement within a function. Functions may not include wait
statements.

Recommendation
Note that wait statements are legal within procedures, but are not supported for synthesis.

160 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0172

Summary
A function must be completed by a return statement.

Description
The Compiler has encountered a function that does not contain a return statement. Functions must
have at least one return statement with a return value.

Recommendation
Check to make sure that a return statement is the last statement of the function and that the return
statement is not dependent on an if statement or other conditional expression.

Error Message: $Y0173

Summary
The subtype indication given in the full declaration of 'name' must conform to that given in the deferred
constant declaration.

Description
The Compiler has encountered a full constant declaration that is incompatible with the associated
deferred constant declaration. The subtype indications specified for the deferred and full constant
declarations are incompatible.

Recommendation
Check to make sure that the same subtype indications of the deferred and full constant declaration are
compatible.

Error Message: $Y0174

Summary
Range of a physical type must be an integer.

Description
The Compiler has encountered a physical type declaration that includes non-integer units.

Recommendation
Check to make sure that the physical type declaration includes a valid base unit and that subsequent
units are defined using an integer multiplier.

TR0115 (v1.1) June 10, 2005 161

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0175

Summary
Subprogram declaration 'name', does not have a corresponding body.

Description
The Compiler was unable to find a function or procedure body corresponding to the subprogram
declaration indicated.

Recommendation
Check to make sure that you have provided a function or procedure body for the subprogram. If the
subprogram has been declared within a package, make sure that a corresponding package body has
been provided that includes the function or procedure body.

Also check to make sure the declarations in the package and package body match.

Error Message: $Y0176

Summary
Deferred constant declaration 'name', is not declared in a package body.

Description
The Compiler was unable to find a full constant declaration corresponding to the deferred constant
declaration indicated.

Recommendation
Check to make sure that you have provided a full constant declaration for the indicated deferred
constant.

Check to make sure that a corresponding package body has been provided for the package containing
the deferred constant declaration.

Error Message: $Y0177

Summary
Return statement must be within a Function or Procedure.

Description
The Compiler has encountered a return statement that is not within a function or procedure body.

Recommendation
Check to make sure that you are using the return statement correctly to exit from a subprogram.

Also check to ensure that you have not incorrectly placed one or more end statements that would
cause the subprogram to be prematurely terminated.

162 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0178

Summary
Next statement must be within a Loop statement.

Description
The Compiler has encountered a next statement that is not within a loop.

Recommendation
Check to make sure that you are using the next statement correctly in the loop.

Also check to ensure that you have not incorrectly placed the end loop statement before the next
statement.

Error Message: $Y0179

Summary
Reserved word UNAFFECTED may only appear as a waveform in a concurrent signal assignment.

Description
The Compiler has encountered an invalid use of the indicated keyword. The unaffected keyword is
only allowed in waveforms that are part of a concurrent signal assignment. (Note also that only the first
item in a waveform is supported in synthesis).

Recommendation
Check the proper use of the unaffected keyword and modify the design.

Error Message: $Y0180

Summary
Attempt to assign to a port with mode IN.

Description
The Compiler has encountered an invalid use of a port with mode in. It is not legal to assign values to
ports that have been declared as mode in.

Recommendation
Check to make sure that you are assigning to the correct port in your design. If you need to assign a
value to the port, use mode inout or out.

TR0115 (v1.1) June 10, 2005 163

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0181

Summary
Attempt to assign to a port with mode LINKAGE.

Description
The Compiler has encountered an invalid use of a port with mode linkage. It is not legal to assign
values to ports that have been declared as mode linkage.

Recommendation
Check to make sure that you are assigning to the correct port in your design. If you need to assign a
value to the port, use mode inout or out.

Error Message: $Y0182

Summary
Attempt to assign to implicit signal 'guard'.

Description
The Compiler has encountered an invalid use of the implicit signal guard. This signal is created as a
result of a guard expression, and may not have a value assigned to it.

Recommendation
Check to make sure that you have not specified the wrong identifier name in the assignment. If you are
attempting to modify the guard expression dynamically, you will need to rewrite the design so there are
multiple guarded blocks specified with the required guard expressions.

Error Message: $Y0183

Summary
Attempt to assign to an alias of a port with mode IN.

Description
The Compiler has encountered an invalid use of a port with mode in. It is not legal to assign values to
ports, or to aliases of ports, that have been declared as mode in.

Recommendation
Check to make sure that you are assigning to the correct port in your design. If you need to assign a
value to the port, use mode inout or out.

164 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0184

Summary
Attempt to assign to an alias of a port with mode LINKAGE.

Description
The Compiler has encountered an invalid use of a port with mode linkage. It is not legal to assign
values to ports, or to aliases of ports, that have been declared as mode linkage.

Recommendation
Check to make sure that you are assigning to the correct port in your design. If you need to assign a
value to the port, use mode inout or out.

Error Message: $Y0185

Summary
A description cannot be the target of a Signal assignment statement.

Description
The Compiler has encountered an invalid use of a signal assignment (<=). The target of a signal
assignment must be a signal or port.

Recommendation
Check to make sure that the left side of the assignment is a signal or port. If you are assigning to a
variable, use the variable assignment operator := .

Note, however, that variable assignments occur immediately within the process and signal
assignments are executed at the end of a process. Such a substitution may change the behavior of
your design.

Error Message: $Y0186

Summary
A description cannot be the target of a Variable assignment statement.

Description
The Compiler has encountered an invalid use of a variable assignment (:=). The target of a variable
assignment must be a variable.

Recommendation
Check to make sure that the left side of the assignment is a variable. If you are assigning to a signal or
port, use the signal assignment operator <= .

Note, however, that variable assignments occur immediately within the process and signal
assignments are executed at the end of a process. Such a substitution may change the behavior of
your design.

TR0115 (v1.1) June 10, 2005 165

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0187

Summary
Expected a static expression, description 'name' is illegal here.

Description
The Compiler has encountered an expression that is invalid in the current context. A static expression
(one that can be evaluated at compile time and does not depend on a signal or variable) is expected.

Recommendation
Check to make sure the expression is static.

Error Message: $Y0188

Summary
Signal 'name' is not readable as it has mode OUT.

Description
The Compiler has encountered an invalid use of a port with mode out. It is not legal to read values of
ports, or aliases of ports, that have been declared as mode out.

Recommendation
Check to make sure that you are specifying the correct port in your design. If you need to read the
value of a port, use mode buffer. You could also consider mode inout. This, however, specifies bi-
directional data flow and is often over-specification.

Error Message: $Y0189

Summary
'name' is not a static signal name.

Description
The Compiler has encountered an object or expression that is invalid in the current context. A static
expression (one that can be evaluated at compile time and does not depend on a signal or variable) is
expected.

Recommendation
Check to make sure that the object or expression is static.

166 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0190

Summary
Enumerated type contains duplicate element 'name'.

Description
The Compiler has encountered two or more identical enumerated values in an enumerated type
declaration.

Recommendation
Check to make sure that you have not incorrectly typed in the enumerated values for the type. Remove
or rename the duplicate entries.

Error Message: $Y0191

Summary
Array type is not constrained.

Description
The Compiler has encountered an unsupported use of an unconstrained array type.

Recommendation
Check to make sure that all array types in your design are provided with valid array bounds (ranges).

Error Message: $Y0192

Summary
Function parameter must be mode IN.

Description
The Compiler has encountered an incorrect use of a function parameter.

Recommendation
All formal parameters of a function must be of mode in (which is the default mode) and may not be
assigned values within the function. If you require that one or more parameters of your subprogram be
of mode out or inout, then you will need to use a procedure, rather than a function.

TR0115 (v1.1) June 10, 2005 167

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0193

Summary
Package Body with no Package of same name.

Description
The Compiler has encountered a package body that does not correspond to any package in the
design.

Recommendation
Check to make sure that a package has been provided corresponding to the package body and that
the package and package body names are consistent and in the same library.

Error Message: $Y0194

Summary
Unable to determine type of array index.

Description
The Compiler has encountered an array index that is of an unknown type.

Recommendation
Check to make sure that the expression used for the array index results in a integer or other valid index
value. Introducing an intermediate signal or variable can help to resolve data type ambiguities.

Error Message: $Y0195

Summary
Array must have an index constraint.

Description
The Compiler has encountered an array without an index constraint, in a context where unconstrained
arrays are not allowed.

Recommendation
Check to make sure that the array is provided with an index constraint.

168 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0196

Summary
Prefix of a selected name cannot be a slice name.

Description
The Compiler has encountered an invalid selected name. The prefix of a selected name must be a
library, package, block, subprogram or record name.

Recommendation
Check to make sure that you have correctly specified the selected name. If a selected name was
intended, check to make sure the prefix of the selected name is a valid selection name.

Error Message: $Y0197

Summary
Formal 'name' in port map does not exist in port declaration.

Description
The Compiler has encountered a named association within a component instantiation that does not
match the port declaration for the specified component or lower-level entity.

Recommendation
Check to make sure that the named association has been correctly entered.

Also check the component declaration to ensure that the lower- level entity has been properly declared.

Error Message: $Y0198

Summary
Only the last entry in a group template declaration can include a <>.

Description
The Compiler has encountered an invalid specification of a group template declaration. When used in a
group template declaration, only the last entry of the group can be a box (<>).

Recommendation
Check to make sure that you have specified a legal group template declaration and modify the entries
accordingly.

TR0115 (v1.1) June 10, 2005 169

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

200-series Error Messages

Error Message: $Y0200

Summary
Value of when expression is outside range of values of selected expression.

Description
The Compiler has encountered a when expression that does not match the possible values specified in
the selected expression.

Recommendation
Check to make sure that the when expressions specified in the selected assignment are non-
overlapping and fall into the range of possible values for the selection.

Error Message: $Y0201

Summary
Value of when expression is outside range of values of case expression.

Description
The Compiler has encountered a when expression that does not match the possible values specified in
the case condition expression.

Recommendation
Check to make sure that the when expressions specified in the case condition expression are non-
overlapping and fall into the range of possible values for the case statement.

Error Message: $Y0202

Summary
Operands have types that are incompatible with the operator 'operator'.

Description
The Compiler has encountered an expression that is not legal due to incompatibilities between the
operand types and the operator used.

Recommendation
Check to make sure that the operand types have the required operations defined for them. If the
operand types do not support the operator you are using, you can use a type conversion function to
convert the operands to the required types, or write your own overloaded operator.

170 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0203

Summary
'name' has not been declared.

Description
The Compiler has encountered an identifier that has not been declared, or has been declared but is not
visible here.

Recommendation
Check to make sure that the indicated identifier has been declared and is visible where it is being
referenced. If the identifier has been declared within a package, make sure the declaration has been
made visible with a use statement.

Also check to make sure the name has not been hidden by another declaration.

Error Message: $Y0204

Summary
Operands of 'name' have incompatible types.

Description
The Compiler has encountered an expression that is not legal due to incompatibilities between the
operand types and the operator being used.

Recommendation
Check to make sure that the operand types have the required operations defined for them. If the
operand types do not support the operator you are using, you can use a type conversion function to
convert the operands to the required types.

Error Message: $Y0205

Summary
Parameter associated with formal 'name' must be a Variable.

Description
The Compiler has encountered a subprogram parameter that must be a variable, but has not been
declared as a variable. The actual and formal parameters of the subprogram do not match.

Recommendation
Check to make sure the subprogram actual parameters have been properly entered and that they
match the subprogram formal parameters.

TR0115 (v1.1) June 10, 2005 171

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0206

Summary
Parameter associated with formal 'name' must be a Signal.

Description
The Compiler has encountered a subprogram parameter that must be a signal, but has not been
declared as a signal. The actual and formal parameters of the subprogram do not match.

Recommendation
Check to make sure the subprogram actual parameters have been properly entered and that they
match the subprogram formal parameters.

Error Message: $Y0207

Summary
Formal parameter 'name' and its actual parameter have incompatible types.

Description
The Compiler has encountered an actual parameter to a subprogram that is not legal due to
incompatibilities between the actual parameter type and the formal parameter type.

Recommendation
Check to make sure that the actual and formal parameters have compatible types. If the types are
different, you may be able to use a type conversion function to convert the operands to the required
types.

Error Message: $Y0208

Summary
Block guard expression must be type boolean.

Description
The Compiler has encountered an invalid block guard expression in a block statement. An implicit
guard signal is boolean type.

Recommendation
Check to make sure that the guard expression has a boolean type.

172 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0209

Summary
Range of an integer type declaration must be some integer type.

Description
The Compiler has encountered an invalid range specification in an integer type declaration. The range
must specify a valid integer range.

Recommendation
Check to make sure that the range has been correctly specified. Make sure the range is specified using
integer values.

Error Message: $Y0210

Summary
Unable to determine type of attribute prefix.

Description
The Compiler has encountered an ambiguous prefix of an attribute. The type of the object prefix of the
attribute is unknown.

Recommendation
Check to make sure that the attribute is being used in the intended way. You may be able to simplify
the description and remove the type ambiguity by introducing an intermediate signal or variable of the
correct type.

Error Message: $Y0211

Summary
Prefix of attribute 'attribute must not be a record.

Description
The Compiler has encountered an invalid use of the indicated attribute.

Recommendation
Check to make sure that the attribute prefix is of the intended type and that the correct attribute is
being used.

TR0115 (v1.1) June 10, 2005 173

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0212

Summary
Parameter of an array attribute must be a universal integer.

Description
The Compiler has encountered an incorrect use of an array attribute.

Recommendation
Check to make sure that the array attribute parameter is a universal integer value.

Error Message: $Y0213

Summary
Operand has a type that is incompatible with the operator 'operator'.

Description
The Compiler has encountered an expression that is not legal due to incompatibilities between the
operand types and the operator being used.

Recommendation
Check to make sure that the operand types have the required operations defined for them. If the
operand types do not support the operator you are using, you can use a type conversion function to
convert the operands to the required types.

Error Message: $Y0214

Summary
Exponent is negative, left operand must be a floating point type.

Description
The Compiler has encountered an invalid use of an exponent. When the exponent of an expression is
negative, the operand must be a floating point object or literal.

Recommendation
Check to make sure that the left operand is a floating type value, or use a type conversion to convert
the value to floating point.

174 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0215

Summary
No parameter associated with formal parameter 'name'.

Description
The Compiler has encountered an incorrect use of a procedure or function. One or more of the
required actual parameters are missing.

Recommendation
Check to make sure that you have specified all required parameters to the procedure or function.

Error Message: $Y0216

Summary
There are more actual parameters than formal parameters.

Description
The Compiler has encountered an incorrect use of a procedure or function. Too many actual
parameters have been specified.

Recommendation
Check to make sure that you have specified the correct number and type of required parameters when
invoking the procedure or function.

Error Message: $Y0217

Summary
Expected a Procedure and not a Function.

Description
The Compiler has encountered a function being used when a procedure was expected. Procedures
must be used when no return value is expected.

Recommendation
Check to make sure that the subprogram you have invoked is declared as a procedure, or use the
subprogram in such a way that the return value is used.

TR0115 (v1.1) June 10, 2005 175

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0218

Summary
Expected a Function and not a Procedure.

Description
The Compiler has encountered a procedure being used when a return value was required. Procedures
do not have return values.

Recommendation
Check to make sure that the subprogram is written as a function, rather than a procedure, or modify the
use of the subprogram so that a return value is not required.

Error Message: $Y0219

Summary
Function returns an incompatible type.

Description
The Compiler has encountered an incompatible use of a function. The types required in the expression
and the type declared for the function do not match.

Recommendation
Check to make sure that the types are compatible. Use a type conversion function if necessary to
convert the returned function value to the appropriate type.

Error Message: $Y0220

Summary
No procedure definition matches 'name'.

Description
The Compiler has encountered a call to a procedure that does not exist, or that is not visible in the
current region of the design.

Recommendation
Check to make sure that the procedure has been declared properly and that the declaration is visible. If
the procedure was declared in a package, you must include a use statement prior to the current design
unit to make the declaration visible.

Procedures may be overloaded; check that the number and type of the actual arguments match one of
the formal declarations of the procedure.

176 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0221

Summary
No function definition matches 'name'.

Description
The Compiler has encountered a call to a function that does not exist, or that is not visible in the
current region of the design.

Recommendation
Check to make sure that the function has been declared properly and that the declaration is visible. If
the function was declared in a package, you must include a use statement prior to the current design
unit to make the declaration visible. Functions may be overloaded, check that the number and type of
the actual arguments match one of the formal declarations of the function.

Error Message: $Y0222

Summary
No actual associated with formal 'name'.

Description
The Compiler has encountered an incorrect use of a procedure or function. One or more of the
required actual parameters are missing.

Recommendation
Check to make sure that you have specified all required parameters to the procedure or function.

Error Message: $Y0223

Summary
More than one association specified for formal parameter 'name'.

Description
The Compiler has encountered an incorrect use of a procedure or function. One or more of the formal
parameters has been incorrectly referenced in a named association, or there is more than one actual
parameter associated.

Recommendation
Check to make sure that you have specified all required parameters to the procedure or function.

TR0115 (v1.1) June 10, 2005 177

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0224

Summary
The aggregate has an incompatible type in this context.

Description
The Compiler has encountered an illegal use of an aggregate. One or more aggregate elements are
not of the correct type.

Recommendation
Check to make sure that the aggregate is of the correct format for the intended usage. The type of an
aggregate is determined from the context, check that the type of the aggregate is clear in this context.

Error Message: $Y0225

Summary
The string has an incompatible type in this context.

Description
The Compiler has encountered an illegal use of a string literal. An element of the string is not of the
correct type.

Recommendation
Check to make sure that the string is of the correct format for the intended usage and that the type of
the elements of the string can be distinguished in this context. The type of a string is determined from
the context, check that the type of the string is clear in this context.

Error Message: $Y0226

Summary
The bit string has an incompatible type in this context.

Description
The Compiler has encountered an illegal use of a bit string literal. An element of the bit string is not of
the correct type.

Recommendation
Check to make sure that the string is of the correct format for the intended usage as a bit string, and
that the type of the elements of the string can be distinguished in this context. The type of a bit string is
determined from the context, check that the type of the bit string is clear in this context.

178 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0227

Summary
The direction of the slice is not the same as the direction of the prefix.

Description
The Compiler has encountered an index range that does not match the direction of the array prefix.

Recommendation
Check to make sure that the declaration of the array matches (in terms of direction, either to or
downto) the range specified in the array slice.

Error Message: $Y0228

Summary
Unable to resolve overloaded procedure 'name'.

Description
The Compiler has encountered a procedure that has two or more possible declarations, but is unable
to determine which procedure declaration is intended due to ambiguous parameter types.

Recommendation
Check to make sure that the parameter types are clearly specified. Introducing intermediate variables
or signals can help to resolve ambiguous types.

Also check that the overloaded procedure declarations do not have arguments with the same type
profile. Overloaded procedures are resolved based on the type of the arguments.

Error Message: $Y0229

Summary
Unable to determine type of attribute parameter.

Description
The Compiler has encountered an attribute parameter that is of an ambiguous type.

Recommendation
Check to make sure that the type of the attribute parameter is clearly distinguished.

TR0115 (v1.1) June 10, 2005 179

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0230

Summary
Prefix of attribute 'attribute must be a scalar type.

Description
The Compiler has encountered an illegal use of an attribute. The indicated attribute is only allowed for
scalar (integer, real, physical or enumerated) types.

Recommendation
Check to make sure that the attribute is being applied to a scalar type.

Error Message: $Y0231

Summary
Prefix of attribute 'attribute must be an array.

Description
The Compiler has encountered an illegal use of an attribute. The indicated attribute is only allowed for
array data types.

Recommendation
Check to make sure that the attribute is being applied to an array data type.

Error Message: $Y0232

Summary
Attribute parameter value exceeds dimensionality of array.

Description
The Compiler has encountered an illegal use of a parameterized attribute. The value of the attribute
parameter must fall within the range of the prefix array.

Recommendation
Check to make sure the attribute parameter matches the corresponding array type declaration.

180 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0233

Summary
An If statement condition expression must be type boolean.

Description
The Compiler has encountered a condition expression in an if statement. The condition expression
used in an if statement must evaluate to a Boolean (True or False) value.

Recommendation
Check to make sure that the expression will evaluate to a Boolean value. If you are testing a binary
value (such as a bit type signal), you should use the relational operator '=' to create a Boolean result.

Error Message: $Y0234

Summary
Wait until expression must be type boolean.

Description
The Compiler has encountered an invalid until expression in a wait statement. The expression used in
a wait until statement must evaluate to a Boolean (True or False) value.

Recommendation
Check to make sure that the expression will evaluate to a Boolean value. If you are testing a binary
value (such as a bit type signal), you should use the relational operator '=' to create a Boolean result.

Error Message: $Y0235

Summary
Select expression must be an integer type, enumerated type, or an array.

Description
The Compiler has encountered an invalid use of a select expression. The select expression must be
an integer, enumerated type or array.

Recommendation
Check to make sure that you have specified a valid select expression and that the expression
evaluates to an integer, enumerated type or array.

TR0115 (v1.1) June 10, 2005 181

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0236

Summary
Case expression must be an integer, enumerated type, or an array.

Description
The Compiler has encountered an invalid use of a case expression. The case expression must be an
integer, enumerated type or array.

Recommendation
Check to make sure that you have specified a valid case expression and that the expression evaluates
to an integer, enumerated type or array.

Error Message: $Y0237

Summary
Select expression must not be a multi-dimensional array.

Description
The Compiler has encountered an invalid use of a select expression. The select expression must be
an integer, enumerated type or single-dimension array.

Recommendation
Check to make sure that you have specified a valid select expression and that the expression
evaluates to an integer, enumerated type or single-dimension array.

Error Message: $Y0238

Summary
Case expression must not be a multi-dimensional array.

Description
The Compiler has encountered an invalid use of a case expression. The case expression must be an
integer, enumerated type or single-dimension array.

Recommendation
Check to make sure that you have specified a valid case expression and that the expression evaluates
to an integer, enumerated type or single-dimension array

182 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0239

Summary
Unable to determine type of With expression from context.

Description
The Compiler has encountered a with expression with an unknown type.

Recommendation
Check to make sure that the with expression has been clearly specified. If necessary, introduce one or
more intermediate signals to clearly distinguish the types of the expression elements.

Error Message: $Y0240

Summary
Unable to determine type of Case expression from context.

Description
The Compiler has encountered a case expression with an unknown type.

Recommendation
Check to make sure that the case expression has been clearly specified. If necessary, introduce one or
more intermediate signals to clearly distinguish the types of the expression elements.

Error Message: $Y0241

Summary
The type of a With expression must be locally static.

Description
The Compiler has encountered a with expression that has a type that is not locally static.

Recommendation
Check to make sure that the type of the with expression is locally static.

Error Message: $Y0242

Summary
The type of a Case expression must be locally static.

Description
The Compiler has encountered a case expression that has a type that is not locally static.

Recommendation
Check to make sure that the type of the case expression is locally static.

TR0115 (v1.1) June 10, 2005 183

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0243

Summary
Loop range must be an integer type or an enumerated type.

Description
The Compiler has encountered an invalid range in a loop statement. Loops ranges must be integer or
enumerated types.

Recommendation
Check to make sure that you have correctly specified the loop range.

Error Message: $Y0244

Summary
Assert condition must be type 'boolean'.

Description
The Compiler has encountered an invalid condition in an assert statement. The condition of an assert
statement must evaluate to a Boolean type.

Recommendation
Check to make sure that you have correctly specified the assert statement. If the assert expression is
an object name, check to make sure the object has been declared as type Boolean. If necessary, use
the '=' comparison operator to create a Boolean expression.

Error Message: $Y0245

Summary
Assert severity must be type 'severity_level'.

Description
The Compiler has encountered an invalid use of the assert severity statement. The severity value
must be specified using the type severity_level (note, warning, error, failure).

Recommendation
Check to make sure that you have correctly specified the value of the assert severity.

184 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0246

Summary
Assert report must be type 'string'.

Description
The Compiler has encountered an invalid use of the assert report statement. The report keyword
must be followed by a valid string.

Recommendation
Check to make sure that you have correctly specified the assert report string.

Error Message: $Y0247

Summary
Shift or rotate right operand must be type 'integer'.

Description
The Compiler has encountered an invalid use of the shift or rotate operator. Only integer values are
allowed as the shift distance (right operand).

Recommendation
Check to make sure that you have correctly specified the shift operation. Check also to make sure the
right operand evaluates to an integer type.

Error Message: $Y0248

Summary
Unable to resolve overloaded function 'name'.

Description
The Compiler has encountered an overloaded function that cannot be resolved due to ambiguous
parameter types or other conditions.

Recommendation
Check to make sure that the parameters of the function are clearly distinguished in terms of their types.

Also check that the overloaded function declarations do not have arguments with the same type profile.
Overloaded functions are resolved based on the type of the arguments.

TR0115 (v1.1) June 10, 2005 185

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0249

Summary
Others is illegal here because aggregate is associated with an unconstrained array.

Description
The Compiler has encountered an illegal use of the others choice. The aggregate being specified
includes an unconstrained array.

Recommendation
Check to make sure that an unconstrained array was actually intended.

Error Message: $Y0250

Summary
Record aggregate contains too many elements.

Description
The Compiler has encountered a record aggregate that is invalid, due to too many elements being
specified.

Recommendation
Check to make sure that the declaration of the record matches its use in the record aggregate.

Error Message: $Y0251

Summary
Others must represent at least one element.

Description
The Compiler has encountered an others clause that does not represent any possible elements.

Recommendation
Check to make sure that the others clause is actually needed.

Error Message: $Y0252

Summary
Others represents choices of record elements of different types.

Description
The Compiler has encountered an invalid use of an others clause. The record elements specified by
the others clause do not match.

Recommendation
Check to make sure that the others clause is being used correctly.

186 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0253

Summary
Record aggregate contains unknown named association.

Description
The Compiler has encountered a record aggregate that includes a named association that is not valid.

Recommendation
Check to make sure that the named associations have been properly entered and all names used in
the association are valid.

Error Message: $Y0254

Summary
Operands of 'operator' have incompatible lengths.

Description
The Compiler has encountered an invalid expression using the indicated operator. The operands of the
expression do not match.

Recommendation
Check to make sure that the correct operands have been specified and that they have the type and
length required.

Error Message: $Y0255

Summary
Array name and range index value number is out of range of the bounds range.

Description
The Compiler has encountered an array index that is invalid. The index is outside the range of the
array declaration. For arrays with more than one index the number of the invalid index is also
displayed.

Recommendation
Check to make sure that the declaration of the array matches the use of the array.

TR0115 (v1.1) June 10, 2005 187

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0256

Summary
Duplicate association in array aggregate, it is a duplicate of association on line 'number'.

Description
The Compiler has encountered an array aggregate association that has already been specified.

Recommendation
Check to make sure that the array association has been correctly entered. Check the duplicate
association indicated for more information.

Error Message: $Y0257

Summary
Duplicate choice in selected signal assignment, it is a duplicate of choice on line 'number'.

Description
The Compiler has encountered a choice in a selected signal assignment that has already been
specified.

Recommendation
Check to make sure that the choice has been correctly entered.

Error Message: $Y0258

Summary
Duplicate choice in case statement, it is a duplicate of choice on line 'number'.

Description
The Compiler has encountered a choice in a case statement that has already been specified.

Recommendation
Check to make sure that the choice has been correctly entered.

Error Message: $Y0259

Summary
Choice Others is required when selected signal assignment expression is a universal integer.

Description
The Compiler has encountered an incomplete selected signal assignment. The use of a universal
integer has resulted in an others choice being required.

Recommendation
Check to make sure that an others choice has been provided, or do not use a universal integer.

188 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0260

Summary
Choice Others is required when case statement expression is a universal integer.

Description
The Compiler has encountered a case statement that does not include a required others choice due to
the use of a universal integer.

Recommendation
Check to make sure that a universal integer is really what you intend in the case expression. Add an
others choice to the case statement to cover the unspecified conditions.

Error Message: $Y0261

Summary
Missing choice in selected signal assignment.

Description
The Compiler has encountered a selected signal assignment that does not include all possible choices.
Selected signal assignments must include all possible choices.

Recommendation
Check to make sure that you have included all possible choices in the selected signal assignment, or
add the others choice to define a default choice.

Error Message: $Y0262

Summary
Missing choice in case statement.

Description
The Compiler has encountered an incompletely specified case statement. Case statements must cover
all possible input choices, or include the others choice to provide a default choice.

Recommendation
Check to make sure that all possible choices are included in the case statement, or add an others
choice.

TR0115 (v1.1) June 10, 2005 189

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0263

Summary
The value of the choice is outside the range of array elements.

Description
The Compiler has encountered a choice in a case statement that does not fall in the range of possible
values specified in the selection expression.

Recommendation
Check to make sure that the selection expression and choices in the case statement are compatible.

Error Message: $Y0264

Summary
Elements of an array aggregate must be either all positional or all named.

Description
The Compiler has encountered an array aggregate that is composed of both positional association and
named association for its elements. Aggregates that use named association for any of their elements
must use named association for all elements.

Recommendation
Check to make sure that you have not inadvertently omitted the named association for one or more
elements of the aggregate.

Error Message: $Y0265

Summary
Too few elements in array aggregate.

Description
The Compiler has encountered an array aggregate that does not match the usage. The number of
elements in the array aggregate is incorrect.

Recommendation
Check to make sure that source and destination array aggregates match, in terms of the number and
types of their elements.

190 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0266

Summary
Too few elements in string.

Description
The Compiler has encountered a string that is not valid in the current context.

Recommendation
Check the format of the string and check to ensure that it matches the intended usage.

Error Message: $Y0267

Summary
Too few elements in bit string.

Description
The Compiler has encountered a bit string that does not match (in terms of size) the objects used in an
expression or assignment.

Recommendation
Check to make sure that the bit string contains the correct number of bit characters. If you have
entered the bit string using an alternate (non-binary) format, check to ensure that the bit string
represents the expected number of bits when analyzed.

Error Message: $Y0268

Summary
Too many elements in array aggregate.

Description
The Compiler has encountered an array aggregate that does not match the usage. The number of
elements in the array aggregate is incorrect.

Recommendation
Check to make sure that source and destination array aggregates match, in terms of the number and
types of their elements.

TR0115 (v1.1) June 10, 2005 191

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0269

Summary
Too many elements in string.

Description
The Compiler has encountered a quoted string that is illegal for the current expression or assignment.

Recommendation
Check to make sure that the string is of the correct format for the intended usage.

Also check to ensure that you have not omitted the terminating quote character.

Error Message: $Y0270

Summary
Too many elements in bit string.

Description
The Compiler has encountered a bit string that does not match (in terms of size) the objects used in an
expression or assignment.

Recommendation
Check to make sure that the bit string contains the correct number of bit characters. If you have
entered the bit string using an alternate (non-binary) format, check to ensure that the bit string
represents the expected number of bits when analyzed.

Error Message: $Y0271

Summary
Value assigned to target is outside range of values in target subtype.

Description
The Compiler has encountered an invalid assignment to an object. The value on the right-hand side is
outside of the possible values allowed for the left-hand side. The possible values are defined by the
subtype of the left-hand side as specified in its declaration.

Recommendation
Check to make sure that the target of the assignment is a type compatible with the assigned value.

Check the declaration of the subtype to ensure that it specifies the required range.

192 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0272

Summary
Too many elements in record aggregate.

Description
The Compiler has encountered an invalid aggregate. The record aggregate specified has too many
elements for the record type.

Recommendation
Check to make sure that the record type declaration is compatible with the aggregate you have
specified.

Error Message: $Y0273

Summary
The actual signal associated with a signal parameter must be denoted by a static signal name.

Description
The Compiler has encountered an invalid actual argument to a subprogram or component. Parameters
of kind signal must be specified with static signal names, rather then expressions.

Recommendation
Check to make sure that the actual parameter is compatible with a parameter of kind signal, or modify
the subprogram so that it does not require parameter kind signal.

Error Message: $Y0274

Summary
Aggregate type must be array or record.

Description
The Compiler has encountered an invalid aggregate specification. The result of the aggregate must be
an array or record type.

Recommendation
Check to make sure that the aggregate has been properly specified.

TR0115 (v1.1) June 10, 2005 193

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0275

Summary
Parameter of attribute 'succ equals prefix'base'high.

Description
The Compiler has encountered an invalid use of the 'succ attribute. The parameter of the 'succ attribute
does not have a successor.

Recommendation
Check to make sure that the declaration of the base type is compatible with the use of the 'succ
attribute parameter.

Error Message: $Y0276

Summary
Parameter of attribute 'pred equals prefix'base'low.

Description
The Compiler has encountered an invalid use of the 'pred attribute. The parameter of the 'pred attribute
does not have a predecessor.

Recommendation
Check to make sure that the declaration of the base type is compatible with the use of the 'pred
attribute parameter.

Error Message: $Y0277

Summary
Parameter of attribute 'leftof equals prefix'base'left.

Description
The Compiler has encountered an invalid use of the 'leftof attribute. The parameter of the 'leftof
attribute does not have a predecessor.

Recommendation
Check to make sure that the declaration of the base type is compatible with the use of the 'leftof
attribute parameter.

194 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0278

Summary
Parameter of attribute 'rightof equals prefix'base'right.

Description
The Compiler has encountered an invalid use of the 'rightof attribute. The parameter of the 'rightof
attribute does not have a successor.

Recommendation
Check to make sure that the declaration of the base type is compatible with the use of the 'rightof
attribute parameter.

Error Message: $Y0279

Summary
Parameter of attribute 'val is too large.

Description
The Compiler has encountered an attribute value that is too large.

Recommendation
Check to make sure that the attribute parameter is a valid integer value.

Error Message: $Y0280

Summary
Parameter of attribute 'val is too small.

Description
The Compiler has encountered an attribute value that is too small.

Recommendation
Check to make sure that the attribute parameter is a valid integer value.

TR0115 (v1.1) June 10, 2005 195

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0281

Summary
Subtype range is not within the range of the base type.

Description
The Compiler has encountered an invalid specification of a subtype. Subtype declarations must specify
ranges of values that are within the range of the specified base type.

Recommendation
Check to make sure that the correct base type has been referenced, and that the range of the subtype
falls within the range of the base type.

Error Message: $Y0282

Summary
Too many choices in case statement.

Description
The Compiler has encountered an invalid case statement. There are too many choices provided for the
possible values of the case condition expression.

Recommendation
Check to make sure that you have not specified case choices that overlap and that you have not
duplicated the same choice in two different case choices.

Error Message: $Y0283

Summary
Select expression is an array which must be of a character type.

Description
The Compiler has encountered an invalid array specification in a selection expression. The expected
selection expression must be a character array.

Recommendation
Check to make sure that the selection expression is a valid array type.

196 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0284

Summary
Case expression is an array that must be of a character type.

Description
The Compiler has encountered an invalid array specification in a case expression. The expected case
expression must be a character array.

Recommendation
Check to make sure that the case expression is a valid array type.

Error Message: $Y0285

Summary
Unable to determine type of array.

Description
The Compiler has encountered an array specification that cannot be resolved to a known type.

Recommendation
Check to make sure that the array type is clearly distinguished.

Error Message: $Y0286

Summary
Attempt to index non-array.

Description
The Compiler has encountered an index operation on an object that is not an array type. Only array
types may be indexed.

Recommendation
Check to make sure that the object being indexed is declared as an array. Use a type conversion
function to convert the object to a valid array type if necessary.

TR0115 (v1.1) June 10, 2005 197

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0287

Summary
Array index has an incompatible type.

Description
The Compiler has encountered an invalid array index. An array index must be either an integer,
enumerated or physical type.

Recommendation
Check to make sure that the array index has been correctly specified.

Also check the declaration of the array index object to ensure it is an integer, enumerated or physical
type.

Error Message: $Y0288

Summary
Array index must be a scalar type.

Description
The Compiler has encountered an invalid array index. The array index must be a scalar type.

Recommendation
Check to make sure that the array index has been correctly specified.

Also check the declaration of the array index object to ensure it is a scalar type.

Error Message: $Y0289

Summary
A Next statement condition expression must be type boolean.

Description
The Compiler has encountered an invalid condition expression in the next statement of a loop. The
conditions expression used in a next statement must evaluate to a Boolean (True or False) value.

Recommendation
Check to make sure that the expression will evaluate to a Boolean value. If you are testing a binary
value (such as a bit type signal), you should use the relational operator '=' to create a Boolean result.

198 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0290

Summary
An Exit statement condition expression must be type boolean.

Description
The Compiler has encountered an invalid condition expression in the exit statement of a loop. The
conditions expression used in an exit statement must evaluate to a Boolean (True or False) value.

Recommendation
Check to make sure that the expression will evaluate to a Boolean value. If you are testing a binary
value (such as a bit type signal), you should use the relational operator '=' to create a Boolean result.

Error Message: $Y0291

Summary
A while loop condition expression must be type boolean.

Description
The Compiler has encountered an invalid condition expression in a while loop. The conditions
expression used in a while loop must evaluate to a Boolean (True or False) value.

Recommendation
Check to make sure that the expression will evaluate to a Boolean value. If you are testing a binary
value (such as a bit type signal), you should use the relational operator '=' to create a Boolean result.

Error Message: $Y0292

Summary
Unable to resolve the types of the operands of 'name'.

Description
The Compiler has encountered an ambiguous expression in which the argument types could not be
resolved.

Recommendation
Check to make sure that the argument types are clearly distinguished. Introduce intermediate signals
or variables if necessary to clearly distinguish the types of literal values.

TR0115 (v1.1) June 10, 2005 199

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0293

Summary
Too few elements in Group.

Description
The Compiler has encountered a group declaration that does not match the size of the group template
declaration.

Recommendation
Check to make sure that the group declaration and group template declaration are compatible.

Error Message: $Y0294

Summary
Too many elements in Group.

Description
The Compiler has encountered a group declaration that does not match the size of the group template
declaration.

Recommendation
Check to make sure that the group declaration and group template declaration are compatible.

Error Message: $Y0295

Summary
The prefix of a signature must be a subprogram or enumeration literal.

Description
The Compiler has encountered a signature prefix that is invalid. A signature prefix must be either a
subprogram (function or procedure) name or an enumeration literal.

Recommendation
Check to make sure that the signature prefix is a valid function or procedure name, or is an
enumeration literal.

200 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0296

Summary
The signature does not match the 'description'.

Description
The Compiler has encountered a subprogram signature that does not match the specified subprogram.

Recommendation
Check to make sure that the type specified in the signature matches the return value of the specified
function or procedure.

Error Message: $Y0297

Summary
A signature is required here because the 'description' is overloaded.

Description
The Compiler has encountered an ambiguous use of an overloaded operator. The context of the
operation does not provide enough information to distinguish between two or more possible operator
functions.

Recommendation
Check to make sure that the data types used for the operands are clear and unambiguous. Add a
signature if necessary to clearly identify the operator function. Introducing intermediate signals or
variables can often solve problems with ambiguous types and operations.

400-series Error Messages

Error Message: $Y0400

Summary
Signal 'name' has multiple drivers.

Description
The Compiler has encountered a signal that is being driven in more than one process.

Recommendation
Check to make sure that the signal is not assigned in more than one process.

Note that it is legal VHDL to have a signal with multiple drivers if the signals type is a resolved type (i.e.
has a resolution function) such as 'std_logic' (but not 'std_ulogic'). It is a synthesis constraint, however,
that resolution functions are ignored so that no type is a resolved type. In this case you must recode
your design so that it does not depend upon the resolution function.

TR0115 (v1.1) June 10, 2005 201

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0401

Summary
No Block label matches configuration label 'name'.

Description
The Compiler has encountered an invalid configuration. The indicated block label cannot be found.

Recommendation
Check to make sure that the block label has been correctly entered in the configuration.

Error Message: $Y0402

Summary
No component matches Configuration for 'name'.

Description
The Compiler has been unable to find the indicated component in the current design. The configuration
statement or declaration is invalid.

Recommendation
Check to make sure that the component name has been correctly specified in the configuration.

Check also to make sure that the component has been properly referenced in the design and that the
design unit in which the component has been referenced is included in the current compile.

Error Message: $Y0403

Summary
Generate range is unconstrained.

Description
The Compiler has encountered a generate range that is invalid. Generate ranges must not be
unconstrained.

Recommendation
Check to make sure that the generate range specified is correct and is properly constrained.

202 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0404

Summary
Component has more than one binding.

Description
The Compiler has encountered a problem in the specified binding of a component. Two or more
component configurations are in conflict.

Recommendation
Check to make sure that duplicate component bindings are not specified.

Error Message: $Y0405

Summary
Next or Exit is not inside loop with matching label.

Description
The Compiler has encountered an invalid next or exit statement. The loop label specified in the next
or exit statement is not valid.

Recommendation
Check to make sure that the loop label specifies a valid loop and that the next or exit statement is
inside the specified loop.
Also check to make sure you have not inadvertently terminated the loop with a misplaced end loop
statement.

Error Message: $Y0406

Summary
The array index is illegal for a null array.

Description
The Compiler has encountered an array index for a null array. Null arrays do not have any members
and therefore cannot be indexed.

Recommendation
Check to make sure that the array has been declared as intended and that the index is valid.

TR0115 (v1.1) June 10, 2005 203

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0408

Summary
Design contains no entity.

Description
The Compiler was unable to find a valid entity in the input design files.

Recommendation
Check to make sure that you have correctly specified the input source files and that one or more valid
entities exist in the design.

Error Message: $Y0420

Summary
Result of 'operator' exceeds maximum possible value.

Description
The Compiler has encountered an operation that will produce an overflow result.

Recommendation
Check to make sure that the operator and operands have been correctly specified.

Also check the range of the data type being used.

Error Message: $Y0421

Summary
Result of 'operator' exceeds minimum possible value.

Description
The Compiler has encountered an operation that will produce an underflow result.

Recommendation
Check to make sure that the operator and operands have been correctly specified. Also check the
range of the data type being used.

204 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0422

Summary
Divide by zero.

Description
The Compiler has encountered an operation that will produce an undefined result. A divisor specified in
the expression is zero.

Recommendation
Check to make sure that the operator and operands have been correctly specified.

Check to ensure that the divisor is non-zero.

Error Message: $Y0430

Summary
Description 'name' was not declared as static.

Description
The Compiler has encountered a non-static expression in a context where only a static expression is
valid.

Recommendation
Check to make sure that the expression specified is a static expression.

Error Message: $Y0431

Summary
Unconstrained range in CASE statement choice.

Description
The Compiler has encountered an invalid choice in a case statement. The range specified must be
constrained.

Recommendation
Check to make sure that the case statement has been correctly specified and that all choices specify
constrained expressions.

TR0115 (v1.1) June 10, 2005 205

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error message: $Y0432

Summary
Selected prefix is not a record.

Description
The Compiler has encountered an invalid used of a record attribute. The prefix is not a record type.

Recommendation
Check to make sure that you are specifying a valid record type of object in the attribute specification. If
you did not intend to use a record attribute, check to make sure you are specifying the correct attribute.

Error Message: $Y0434

Summary
Description 'name' value is non-constant.

Description
The Compiler has encountered a constant declaration that does not specify a constant value.

Recommendation
Check to make sure that the constant value is correctly specified, or use a signal declaration if a non-
constant value is required.

Error Message: $Y0435

Summary
Generic value illegal for its type.

Description
The Compiler has encountered an invalid use of a generic. The value of generic must be within the
range of the subtype of the generic.

Recommendation
Check to make sure that you have correctly specified the generic value.

Also check to make sure the generic has been correctly specified in the lower-level design unit.

206 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0436

Summary
Constant value illegal for its type.

Description
The Compiler has encountered a constant (scalar) value that is not legal for the type used. This error is
most likely the result of specifying a numeric value that is outside the valid range of numeric types.

Note that the value of a constant must be within the range of the subtype of the constant.

Recommendation
Check to make sure that the constant has been entered in the format required for the type.

Also check to ensure that you have specified a value that is in the legal range for the type.

Error Message: $Y0437

Summary
Expected signal, variable, or constant but not a description.

Description
The Compiler has encountered a named item (such as a design unit name, subprogram name, type or
block name) when a signal, variable or constant name was required.

Recommendation
Check to ensure that you have used the correct object name.

Also check to make sure that you have not inadvertently used the same name for a block, loop or
process label as you have used for a signal, variable or constant.

Error Message: $Y0438

Summary
Loop range is unconstrained.

Description
The Compiler has encountered a loop with an unconstrained range in the iteration specifier.
Unconstrained loops are not supported.

Recommendation
Check to make sure that the iteration range has been properly specified.

TR0115 (v1.1) June 10, 2005 207

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0440

Summary
Subprogram call actual parameter is an unconstrained array.

Description
The Compiler has encountered an invalid use of a function or procedure. The parameters specified for
functions or procedures must be either a signal, variable, or constant, or an expression that results in a
value of the appropriate type. Subprogram parameters that are arrays must be constrained.

Recommendation
Check to make sure that the function or procedure is being used properly, and that all parameters
specified when using the subprogram are valid.

Error Message: $Y0441

Summary
Actual parameter associated with OUT formal parameter 'name' is an expression.

Description
The Compiler has encountered an invalid use of a procedure. Parameters specified as type out in a
procedure must be either a signal, variable, or constant. Expressions are not allowed as actual
parameters when the procedure parameter is of mode out.

Recommendation
Check to make sure that the procedure is being used properly, and that all parameters specified when
using the subprogram are valid. If the parameter indicated is intended to be a procedure input, then
change the parameter's mode from out to in.

Error Message: $Y0442

Summary
Function 'name' has no return statement.

Description
The indicated function has not been provided with a return statement. All functions must be provided
with a value prior to exiting. This value must be specified using a return statement.

Recommendation
Check to make sure that the function is provided with a return statement and that there is no possibility
of the return statement to be skipped as a result of a conditional expression.

208 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0450

Summary
Expected a static expression here.

Description
The Compiler has encountered a non-static expression when a static value or expression was required.
A static expression is an expression whose value cannot be determined at the time of compilation.

Recommendation
Check to make sure that the expression used is static.

Error Message: $Y0451

Summary
Named association missing from record aggregate.

Description
The Compiler is unable to determine the correct mapping of record elements in an aggregate due to
the lack of a named association.

Recommendation
Check to make sure that each item in the record aggregate is provided with a named association, or
use positional association and do not omit any record elements.

Error Message: $Y0452

Summary
Named association missing from array aggregate.

Description
The Compiler is unable to determine the correct mapping of array elements in an aggregate due to the
lack of a named association.

Recommendation
Check to make sure that each item in the array aggregate is provided with a named association, or use
positional association and do not omit any array elements.

TR0115 (v1.1) June 10, 2005 209

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0453

Summary
Record aggregate has missing element(s).

Description
The Compiler is unable to determine the correct mapping of record elements in an aggregate due to
the lack of one or more record elements being specified.

Recommendation
Check to make sure that each item in the record aggregate is provided, or use named association to
specify the aggregate.

Error Message: $Y0454

Summary
Description 'name' has a type that is an unconstrained array.

Description
The Compiler has encountered an unconstrained array being used where an unconstrained array is not
allowed.

Recommendation
Check to make sure that you have properly specified the array and provided a constraint range if
necessary.

Error Message: $Y0460

Summary
Combinational Feedback using variable 'name'.

Description
The Compiler has determined that the indicated variable will require combinational feedback to
produce the specified behavior. Combinational feedback is specified whenever a variable's value is
read prior to its having been set in a process or subprogram.

Recommendation
Check to make sure that you have used the variable correctly. If you did not intend to generate a
combinational feedback loop, be sure you have assigned a value to the variable before attempting to
use it in an expression.

210 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0470

Summary
Constraint: Unexpected use of 'Z' or NULL, unable to infer a tristate.

Description
The Compiler has encountered a use of the 'Z' or null value that appears to be for describing an output
enable, but enable logic following the conventions of the Synthesis Compiler has not been specified.

Recommendation
Check to make sure that an enable expression has been specified using a conditional signal
assignment or an if statement. Also check that an if statement describing a tristate is a simple if
statement and not embedded within another if statement or a case statement.

Error Message: $Y0480

Summary
Constraint: The name library does not contain a description.

Description
The Compiler has encountered the use of a logic element that does not exist in the named gate library
(not VHDL library) and is unable to re-synthesize to some logic element that does exist in the library.
The logic element description will be some form of flip-flop, latch, or tristate. The element does not exist
in the target gate library because it has no realization in the target silicon. A common example of a
structure that may cause this error is a flip-flop with both set and reset.

Recommendation
Change the VHDL source code desription so it does not describe this logic element.

500-series Error Messages

Error Message: $Y0500

Summary
Constraint: A Wait statement may only be the first statement in a Process.

Description
The Compiler has encountered a wait statement used in an unsupported manner. Wait statements are
only supported as the first statement in a process.

Recommendation
Check to make sure that the wait statement is the first statement in the process. If you are attempting
to describe registered behavior with an asynchronous reset, you should use a sensitivity list and an if-
then statement to described the reset and clock logic.

TR0115 (v1.1) June 10, 2005 211

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0501

Summary
Constraint: Process contains more than one Wait statement.

Description
The Compiler has encountered more than one wait statement being used in a process. Only one wait
statement may be used in a process and that wait statement must be the first statement in the
process.

Recommendation
Check to make sure that the wait statement is the first statement in the process and do not attempt to
use more than one wait statement in any one process. If you are trying to describe a system with
multiple clocks, you will have to use multiple processes.

Error Message: $Y0502

Summary
Constraint: Formal part may not be a function call.

Description
The Compiler has encountered an unsupported named association in a subprogram or component
instantiation. The Compiler does not allow the formal parts of subprograms and component
instantiations to be function calls.

Recommendation
Check to make sure that the formal part of the subprogram or component is not a function call.

Error Message: $Y0503

Summary
Constraint: Signal attribute 'attribute is not supported.

Description
The Compiler has encountered the use of an unsupported attribute. This attribute has no meaning for
synthesis and must not be used.

Recommendation
Check to make sure that the correct attribute is being used, or remove the attribute.

212 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0504

Summary
Constraint: WAIT statement in a procedure is not allowed.

Description
The Compiler has encountered a WAIT statement used within a procedure. WAIT statements may only
be used within processes and may only be used as the first statement in a process.

Recommendation
If you are attempting to describe registered logic in a procedure, use the if-then synthesis convention
for describing flip-flop logic.

Also check to ensure that you are not inadvertently attempting to synthesize a test bench.

Error Message: $Y0505

Summary
Constraint: Expected a static expression, description 'name' is not allowed here.

Description
The Compiler has encountered the unsupported use of a non-static expression. Non-static expressions
are those that depend on the value of a signal or port and cannot be evaluated during compilation.

Recommendation
Check to make sure that the expression is static and does not depend on the value of a signal or port.

Error Message: $Y0506

Summary
Constraint: Expected a static expression, Constant 'name' is not static.

Description
The Compiler has encountered the unsupported use of a non-static expression. Non-static expressions
are those that depend on the value of a signal or port and cannot be evaluated during compilation.

Recommendation
Check to make sure that the expression is static and does not depend on the value of a signal or port.

TR0115 (v1.1) June 10, 2005 213

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0507

Summary
Constraint: '**' is supported only for constant operands.

Description
The Compiler has encountered an unsupported use of the '**' (exponentiation) operator. Only constant
exponent values are allowed.

Recommendation
Check to make sure that the exponent value specified is a constant value.

Error Message: $Y0508

Summary
Constraint: Assign to array element must have constant array index.

Description
The Compiler has encountered the unsupported use of a non-constant array index in an assignment to
a multi-dimensional array.

Recommendation
The Compiler requires that the array target of an assignment be referenced using only constant index
values if you are trying to index more that one dimension of the array.

Check to make sure that the index argument used in the target of the assignment is a constant value.

Error Message: $Y0509

Summary
Constraint: Array slice must have constant range.

Description
The compiler has encountered a non-constant range specification in an array slice. The Compiler
required that array slices be specified using constant range values.

Recommendation
Check to make sure that the array slice is specified using a constant range. You can use a loop or
generate statement to specify non-constant array slices if necessary.

214 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0510

Summary
Constraint: Recursive Hierarchy instantiation.

Description
The Compiler has encountered a recursive instantiation of a component, entity, or configuration. There
is no practical synthesis equivalent to recursive hierarchy instantiation.

Recommendation
Check to make sure that you have not inadvertently created recursion in your design by specifying the
wrong component, entity, or configuration name.

Error Message: $Y0511

Summary
Constraint: Recursive Subprogram call.

Description
The Compiler has encountered a recursive reference to a function or procedure. There is no practical
synthesis equivalent to recursive subprogram specifications.

Recommendation
Check to make sure that you have not inadvertently created recursion in your design by specifying the
wrong function or procedure name.

Error Message: $Y0512

Summary
Constraint: Literal value exceeds maximum positive value.

Description
The Compiler has encountered a numeric value that is larger than the maximum allowed.

Recommendation
Check to make sure that you have correctly specified the numeric literal value.

TR0115 (v1.1) June 10, 2005 215

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0513

Summary
Constraint: Literal value exceeds minimum negative value.

Description
The Compiler has encountered a negative numeric value that is smaller than the maximum allowed.

Recommendation
Check to make sure that you have correctly specified the numeric literal value.

Error Message: $Y0514

Summary
Constraint: Literal fractional part truncated.

Description
The Compiler has encountered a floating point literal value that includes a fractional part. Floating point
numbers are only supported as integer values in synthesis and any fractional part is truncated.

Recommendation
Check to make sure a floating point value was actually intended.

Error Message: $Y0515

Summary
Constraint: Attribute 'event is misused in this process, some combinational logic depends upon the
'event.

Description
The Compiler has encountered an unsupported use of the 'event attribute. 'Event is only supported in
wait statements (entered as the first statement of a process), or in if-then conditional expressions in
processes or subprograms to specify edge-triggered (flip-flop) behavior.

Recommendation
Check to make sure that you have followed the documented synthesis conventions for specifying
registered logic. If the cause of the error is not clear to you then split the process into two processes,
one for the combinational logic and one for the sequential logic.

216 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0516

Summary
Constraint: Attribute 'stable is misused in this process, some combinational logic depends upon the
'stable.

Description
The Compiler has encountered an unsupported use of attribute 'stable in the design. 'stable is not
recommended for synthesizable designs and is only supported in wait statements.

Recommendation
Check to make sure that you have specified the correct attribute. Use the 'event attribute to describe
edge-triggered flip-flop logic. If the cause of the error is not clear to you then split the process into two
processes, one for the combinational logic and one for the sequential logic.

Error Message: $Y0517

Summary
Constraint: Access types are not supported.

Description
The Compiler has encountered an unsupported use of an access type. Access types are not supported
in synthesis.

Recommendation
Rewrite your design so that access types are not required.

Error Message: $Y0518

Summary
Constraint: File types are not supported.

Description
The Compiler has encountered an unsupported use of the type file. File types are not supported in
synthesis.

Recommendation
Check to ensure that you are not inadvertently compiling a test bench, rather than a synthesizable
design description.

Rewrite your design so that file types are not required.

TR0115 (v1.1) June 10, 2005 217

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0519

Summary
Constraint: File Declaration is not supported.

Description
The Compiler has encountered an unsupported use of a file declaration. File declarations are not
supported in synthesis.

Recommendation
Rewrite your design so that file declarations are not required.

Error Message: $Y0520

Summary
Constraint: Allocator New is not supported.

Description
The Compiler has encountered an unsupported use of the memory allocation feature, new. New is not
supported in synthesis.

Recommendation
Check to ensure that you are not inadvertently compiling a test bench, rather than a synthesizable
design description.

Rewrite your design so that new is not required.

Error Message: $Y0521

Summary
Constraint: Waveform truncated.

Description
The Compiler has encountered a waveform specification that includes more than one entry.
Waveforms are not supported for synthesis unless they consist of only a single entry.

Recommendation
Re-specify the design so a waveform is not required, or simply ignore the error message.

218 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0524

Summary
Constraint: Attribute 'attribute parameter is non-constant.

Description
The Compiler has encountered an attribute that is only supported when applied to constant values.

Recommendation
Check to make sure that the target of the attribute parameter is a constant value.

Error Message: $Y0525

Summary
WARNING: Signal 'name' must be in the Process sensitivity list or is an input to a flip-flop that was not
inferred because the flip-flop is incorrectly specified.

Description
The Compiler has determined that the indicated signal is an asynchronous input to the current process
and must therefore be included in the process sensitivity list. This may result in a mismatch between
simulation before synthesis and simulation after synthesis, but will not terminate synthesis execution.

Recommendation
Check to make sure that the indicated signal was intended to be an asynchronous input to the process.

If the signal was intended as an asynchronous input, add that signal name to the sensitivity list. If the
signal was not intended to an asynchronous input, check to ensure that all output signals referencing
the indicated signals as an input have been properly and completely specified.

Take special care to ensure that unwanted latches have not been inadvertently specified.

Error Message: $Y0526

Summary
WARNING: Flip-flop 'name' has missing preset or reset.

Description
The Compiler has determined that the behavior of the indicated registered signal is ambiguous without
a reset or preset being provided. This warning occurs when the missing preset or reset specifies a flip-
flop with a gated clock, when the other flip-flops inferred in the process do not have gated clocks. By
convention synthesis tools implement a flip-flop without a gated clock in this case. This may result in a
mismatch between simulation before synthesis and simulation after synthesis, but will not terminate
synthesis execution.

Recommendation
Check to make sure that the indicated signal is either provided with preset or reset logic, or has been
described in such a way that its behavior is unambiguous for all possible input conditions.

TR0115 (v1.1) June 10, 2005 219

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0527

Summary
Constraint: Shared Variable Declarations not supported.

Description
The Compiler has encountered an unsupported use of shared variables. Shared variables are not
support in synthesis.

Recommendation
Rewrite your design so that shared variables are not required.

Error Message: $Y0528

Summary
Constraint: An operator symbol (description) is not supported here.

Description
The Compiler has encountered an unsupported use of an operator in the context of an alias.

Recommendation
Rewrite the design section so the operator is not required, or do not use an alias in this context.

Error Message: $Y0529

Summary
Constraint: Design contains no top level Output, Buffer, or Inout ports.

Description
The Compiler has encountered a design that has no top-level output ports.

Recommendation
Check to make sure you are not inadvertently compiling a test bench. Also check to make sure you
have correctly specified the mode of all entity ports.

Error Message: $Y0530

Summary
Constraint: Hierarchy name must not contain a white space.

Description
The Compiler has encountered an unsupported hierarchical name. Hierarchical names may not include
white space characters.

Recommendation
Check to make sure that the hierarchical name has been correctly entered.

220 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0531

Summary
Constraint: Tristate buffer 'name' drives a logic gate, it must drive a port.

Description
The Compiler has encountered an unsupported use of tristate logic. The output of a tristate buffer is a
logic gate, the buffer must drive a port.

Recommendation
Rewrite the design section so that the tristate buffer drives an output of the design. If you wish to make
use of the internal tristate busses available in some FPGAs to build, for example, a small mux,
consider instantiating a macrocell.

Note that if the Compiler is unable to provide a 'name' related to the original source description, no
'name' will be reported. In this case you should use the file name and line number from the message to
track down the error. The log file may also help as it will report the inference of tristate buffers on a per-
process basis.

Error Message: $Y0532

Summary
Constraint: A name operator may not have an argument that contains metalogic value 'U', 'X', 'W', or '-'.

Description
The Compiler has encountered an unsupported use of metalogic values. This usage is the
interpretation required by the VHDL 1076.3 synthesis standard.

Recommendation

Error Message: $Y0533

Summary
Constraint: 'name' is global and has not been declared in a package.

Description
The Compiler has encountered an unsupported reference to a signal. The signal was declared outside
of the current entity or architecture, but not in a package. The signal is therefore global to the design
and not local to a design unit, this is only supported if the signal is declared in a package.

Recommendation
This may occur if the signal is declared in a different entity or architecture and is made visible by a use
clause. The usual solution is to declare the signal locally.

TR0115 (v1.1) June 10, 2005 221

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

600-series Error Messages

Error Message: $Y0600

Summary
Enum_encoding string may only contain the characters '0' '1' 'Z' '-' 'M' or ' ' or the strings “one hot” or
“gray”.

Description
The Compiler has encountered an invalid character in the enum_encoding attribute string. The only
characters valid in an enum_encoding attribute string are '1', '0', 'Z', 'M', '-' and the space character, or
the special strings 'one hot', '1-hot' or 'gray'.

Recommendation
Check to make sure that the enum_encoding attribute string has been correctly specified.

Error Message: $Y0601

Summary
Each encoding in Enum_encoding must have the same number of characters.

Description
The Compiler has encountered an enum_encoding attribute that does not specify the same number of
characters (bits) for each enumeration value.

Recommendation
Check to make sure that you have specified all enumeration values with an equal number of
characters.

Note that the only characters valid in an enum_encoding attribute string are '1', '0', 'Z', '-', and the space
character.

Error Message: $Y0602

Summary
Enum_encoding may only be applied to an enumerated type.

Description
The Compiler has encountered an enum_encoding attribute that references a non-enumerated type.

Recommendation
Check to make sure that the enum_encoding attribute is being applied to the correct type.

222 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0603

Summary
Enum_encoding must follow the enumerated type declaration.

Description
The Compiler has encountered an enum_encoding attribute that is out of place. An enum_encoding
attribute must be preceded by a valid type declaration.

Recommendation
Check to make sure that the referenced enumerated type has been properly declared.

Error Message: $Y0604

Summary
Too few encodings specified in Enum_encoding.

Description
The Compiler has encountered an enum_encoding attribute specification that does include the correct
number of encodings.

Recommendation
Check to make sure there is one attribute encoding specification provided for each symbolic value
defined in the type declaration.

Also check to ensure you have separated the enumerated encoding values with spaces. If you have
used more than one line in the source file to specify the enum_encoding string, make sure you have
concatenated the strings properly using the '&' operator, and have included spaces to delimit each
encoding.

Error Message: $Y0605

Summary
Too many encodings specified in Enum_encoding.

Description
The Compiler has encountered an enum_encoding attribute specification that does not include the
correct number of encodings.

Recommendation
Check to make sure there is one attribute encoding specification specified for each symbolic valued
defined in the declaration for the enumerated type.

Also check to ensure you have separated the enumerated encoding values with spaces. If you have
used more than one line in the source file to specify the enum_encoding string, make sure you have
concatenated the strings properly using the '&' operator, and have included spaces to delimit each
encoding.

TR0115 (v1.1) June 10, 2005 223

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0606

Summary
Enum_encoding may not be applied to a subtype of an enumerated type.

Description
The Compiler has encountered an invalid use of the enum_encoding attribute. The enum_encoding
attribute may only be applied to an enumerated type, and may not be applied to a subtype.

Recommendation
Check to make sure the attribute is being applied to an enumerated type.

Error Message: $Y0607

Summary
User attribute Critical may only be applied to a Signal.

Description
The Compiler has encountered an invalid use of the special attribute critical. The critical attribute is
used to preserve signals during synthesis and may only be applied to a signal.

Recommendation
Check to make sure that the critical attribute has been applied to a signal.

Error Message: $Y0608

Summary
'name' has a type which is not locally static, a design unit with 'foreign attribute must have ports with
locally static types.

Description
The Compiler has encountered an unsupported use of the 'foreign attribute. 'Foreign is used to
reference external modules and must be used in conjunction with ports that reference locally static
types.

Recommendation
Check to make sure that the indicated port name represents a locally static type of object.

224 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

Error Message: $Y0609

Summary
A design unit with 'foreign attribute may only have ports with mode IN or OUT.

Description
The Compiler has encountered an unsupported mode for an external module port. All ports of external
modules specified using 'foreign must be of mode in or out.

Recommendation
Check to make sure the external module has been referenced using only ports of mode in or out.

700-series Error Messages

Error Message: $Y0700

Summary
NOTE: Signal 'name' is used but not assigned and is driven by its default value.

Description
The Compiler has encountered a use of a signal that is legal VHDL but is a possible programming
error. This message is only reported in the log file and will not terminate execution.

Recommendation
If the intent of the programmer is not to assign to the signal it is more efficient and clearer to replace
the signal declaration with a constant declaration. If the intent is to assign to the signal then there is a
missing assignment and the signal is assumed to always have its default value. Note that if the named
signal is declared as a port in the VHDL source then the message indicates a mismatch between a
component port declaration and its entity port declaration.

Error Message: $Y0701

Summary
NOTE: Port 'name' is not assigned and is driven by its default value.

Description
The Compiler has encountered a use of a port that is legal VHDL but is a possible programming error.
This message is only reported in the log file and will not terminate execution.

Recommendation
The named output port has no logic associated with it and will be driven always high or always low.
The port may be redundant or have a missing assignment.

TR0115 (v1.1) June 10, 2005 225

Gomilitary.in

http://gomilitary.in

VHDL Synthesis Reference

Error Message: $Y0702

Summary
NOTE: Signal 'name' is assigned but not used.

Description
The Compiler has encountered a use of a signal that is legal VHDL but is a possible programming
error. This message is only reported in the log file and will not terminate execution.

Recommendation
The named signal is not used and its assignment is redundant. If the programmers intent was to use
this signal then the usage is missing from another part of the architecture. Note that if the named signal
is declared as a port in the VHDL source then the message indicates a mismatch between a
component port declaration and its entity port declaration.

Error Message: $Y0703

Summary
NOTE: Port 'name' is not used.

Description
The Compiler has encountered a use of a port that is legal VHDL but is a possible programming error.
This message is only reported in the log file, and will not terminate execution.

Recommendation
The named input port is unused, the port may be redundant or have a missing usage. The port may be
removed from the synthesized netlist by some downstream tools

226 TR0115 (v1.1) June 10, 2005

VHDL Synthesis Reference

TR0115 (v1.1) June 10, 2005 227

Revision History

Date Version No. Revision

01-Dec-2004 1.0 New product release

10-Jun-2005 1.1 Updated for Altium Designer SP4

Software, hardware, documentation and related materials:

Copyright © 2005 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use
only and will not be copied or posted on any network computer or broadcast in any media and (2) no modifications
of the document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or
electronic, including translation into another language, except for brief excerpts in published reviews, is prohibited
without the express written permission of Altium Limited. Unauthorized duplication of this work may also be
prohibited by local statute. Violators may be subject to both criminal and civil penalties, including fines and/or
imprisonment. Altium, Altium Designer, CAMtastic, Design Explorer, DXP, LiveDesign, NanoBoard, Nexar, nVisage,
P-CAD, Protel, Situs, TASKING and Topological Autorouting and their respective logos are trademarks or registered
trademarks of Altium Limited or its subsidiaries. All other registered or unregistered trademarks referenced herein
are the property of their respective owners and no trademark rights to the same are claimed.

Gomilitary.in

http://gomilitary.in

	VHDL Synthesis Reference
	Structure of a VHDL Design Description
	Structural VHDL
	Data Flow VHDL
	Behavioral VHDL
	VHDL Types
	Simulatable, but not necessarily synthesizable
	PLD Programming using VHDL
	Design I/0
	Combinational Logic
	Registers and Tri-state
	State Machines
	Hierarchy
	Types
	Compiling
	Debugging
	Downstream Tools
	Understanding Synthesis Tools

	Programming Combinational Logic
	Logical Operators
	Relational Operators
	Arithmetic Operators
	Control Statements
	Subprograms and Loops
	Shift and Rotate Operators
	Tri-states

	Programming Sequential Logic
	Sequential Logic Behavior
	Latches
	Flip-Flops
	Gated Clocks and Clock Enable
	Synchronous Set or Reset
	Asynchronous Set or Reset
	Asynchronous Set and Reset
	Asynchronous Load
	Register Inference Rules

	Programming Finite State Machines
	Feedback Mechanisms
	Moore Machine
	Mealy Machine

	Synthesis of VHDL Types
	Enumerated Types
	Numeric Types
	Arrays and Records

	Managing Large Designs
	Using Hierarchy
	Blocks
	Direct Instantiation
	Components and Configurations
	Package Declarations and Use Clauses
	VHDL Design Libraries
	Synthesizer VHDL Libraries
	Hierarchical Compilation

	Logic and Metalogic
	Logic expressions
	Metalogic expression
	Metalogic values

	Macrocells
	Parameterized Macrocell Instantiation
	Combinatorial Macrocell Inference
	Sequential Macrocell Inference
	Resource Sharing

	Synthesis Attributes
	User-defined attributes
	Array_to_numeric (Synthesis attribute)
	Clock_buffer (Synthesis attribute)
	Critical (Synthesis attribute)
	Enum_encoding (Synthesis attribute)
	Foreign (Synthesis attribute)
	Inhibit_buf (Synthesis attribute)
	Macrocell (Synthesis attribute)
	Numeric_to_array (Synthesis attribute)
	Part_name (Synthesis attribute)
	Pinnum (Synthesis attribute)
	Property (Synthesis attribute)
	Ungroup (Synthesis attribute)
	Xilinx_BUFG (Synthesis attribute)
	Xilinx_GSR, FPGA_GSR (Synthesis attribute)
	Attributes for Downstream Tools

	Synthesis Coding Issues
	Synthesis Coding Issues
	Test for High Impedance
	Long Signal Paths - Nested ifs
	Long Signal Paths - Loops
	Simulation-optimized code
	Port Mode inout or buffer
	Using Simulation Libraries
	Type Conversion Functions
	Depending on Initial Value
	Assign to Array Index
	Don't Care
	Unintended Latches
	Unintended Combinational Feedback
	Observe the Register Inference Conventions

	VHDL Quick Reference
	Lexical Elements
	Reserved Words
	Declarations and Names
	Sequential Statements
	Subprograms
	Concurrent Statements
	Library Units
	Attributes
	VHDL Constructs
	Unsupported Constructs
	Ignored Constructs
	Constrained Constructs

	Error Messages
	VHDL Synthesis Error Messages
	0-series Error Messages
	Error Message: $Y0001
	Error Message: $Y0002
	Error Message: $Y0003
	Error Message: $Y0004
	Error Message: $Y0005
	Error Message: $Y0006
	Error Message: $Y0007
	Error Message: $Y0008
	Error Message: $Y0009
	Error Message: $Y0010
	Error Message: $Y0011
	Error Message: $Y0012
	Error Message: $Y0013
	Error Message: $Y0014
	Error Message: $Y0015
	Error Message: $Y0016
	Error Message: $Y0017
	Error Message: $Y0018
	Error Message: $Y0019
	Error Message: $Y0020
	Error Message: $Y0021
	Error Message: $Y0022
	Error Message: $Y0023
	Error Message: $Y0024
	Error Message: $Y0025
	Error Message: $Y0026
	Error Message: $Y0027
	Error Message: $Y0028
	Error Message: $Y0029
	Error Message: $Y0030
	Error Message: $Y0031
	Error Message: $Y0032
	Error Message: $Y0033
	Error Message: $Y0034
	Error Message: $Y0035
	Error Message: $Y0036
	Error Message: $Y0082
	Error Message: $Y0083
	Error Message: $Y0084
	Error Message: $Y0085
	Error Message: $Y0086
	Error Message: $Y0087
	Error Message: $Y0088
	Error Message: $Y0089

	100-series Error Messages
	Error Message: $Y0100
	Error Message: $Y0101
	Error Message: $Y0102
	Error Message: $Y0103
	Error Message: $Y0104
	Error Message: $Y0105
	Error Message: $Y0106
	Error Message: $Y0107
	Error Message: $Y0108
	Error Message: $Y0109
	Error Message: $Y0110
	Error Message: $Y0111
	Error Message: $Y0112
	Error Message: $Y0113
	Error Message: $Y0114
	Error Message: $Y0115
	Error Message: $Y0116
	Error Message: $Y0117
	Error Message: $Y0119
	Error Message: $Y0120
	Error Message: $Y0121
	Error Message: $Y0123
	Error Message: $Y0124
	Error Message: $Y0125
	Error Message: $Y0126
	Error Message: $Y0127
	Error Message: $Y0128
	Error Message: $Y0129
	Error Message: $Y0130
	Error Message: $Y0131
	Error Message: $Y0132
	Error Message: $Y0133
	Error Message: $Y0134
	Error Message: $Y0135
	Error Message: $Y0136
	Error Message: $Y0137
	Error Message: $Y0138
	Error Message: $Y0139
	Error Message: $Y0140
	Error Message: $Y0141
	Error Message: $Y0142
	Error Message: $Y0143
	Error Message: $Y0144
	Error Message: $Y0145
	Error Message: $Y0146
	Error Message: $Y0147
	Error Message: $Y0148
	Error Message: $Y0149
	Error Message: $Y0150
	Error Message: $Y0151
	Error Message: $Y0152
	Error Message: $Y0153
	Error Message: $Y0154
	Error Message: $Y0155
	Error Message: $Y0157
	Error Message: $Y0158
	Error Message: $Y0159
	Error Message: $Y0160
	Error Message: $Y0161
	Error Message: $Y0162
	Error Message: $Y0163
	Error Message: $Y0164
	Error Message: $Y0165
	Error Message: $Y0166
	Error Message: $Y0167
	Error Message: $Y0168
	Error Message: $Y0169
	Error Message: $Y0170
	Error Message: $Y0171
	Error Message: $Y0172
	Error Message: $Y0173
	Error Message: $Y0174
	Error Message: $Y0175
	Error Message: $Y0176
	Error Message: $Y0177
	Error Message: $Y0178
	Error Message: $Y0179
	Error Message: $Y0180
	Error Message: $Y0181
	Error Message: $Y0182
	Error Message: $Y0183
	Error Message: $Y0184
	Error Message: $Y0185
	Error Message: $Y0186
	Error Message: $Y0187
	Error Message: $Y0188
	Error Message: $Y0189
	Error Message: $Y0190
	Error Message: $Y0191
	Error Message: $Y0192
	Error Message: $Y0193
	Error Message: $Y0194
	Error Message: $Y0195
	Error Message: $Y0196
	Error Message: $Y0197
	Error Message: $Y0198

	200-series Error Messages
	Error Message: $Y0200
	Error Message: $Y0201
	Error Message: $Y0202
	Error Message: $Y0203
	Error Message: $Y0204
	Error Message: $Y0205
	Error Message: $Y0206
	Error Message: $Y0207
	Error Message: $Y0208
	Error Message: $Y0209
	Error Message: $Y0210
	Error Message: $Y0211
	Error Message: $Y0212
	Error Message: $Y0213
	Error Message: $Y0214
	Error Message: $Y0215
	Error Message: $Y0216
	Error Message: $Y0217
	Error Message: $Y0218
	Error Message: $Y0219
	Error Message: $Y0220
	Error Message: $Y0221
	Error Message: $Y0222
	Error Message: $Y0223
	Error Message: $Y0224
	Error Message: $Y0225
	Error Message: $Y0226
	Error Message: $Y0227
	Error Message: $Y0228
	Error Message: $Y0229
	Error Message: $Y0230
	Error Message: $Y0231
	Error Message: $Y0232
	Error Message: $Y0233
	Error Message: $Y0234
	Error Message: $Y0235
	Error Message: $Y0236
	Error Message: $Y0237
	Error Message: $Y0238
	Error Message: $Y0239
	Error Message: $Y0240
	Error Message: $Y0241
	Error Message: $Y0242
	Error Message: $Y0243
	Error Message: $Y0244
	Error Message: $Y0245
	Error Message: $Y0246
	Error Message: $Y0247
	Error Message: $Y0248
	Error Message: $Y0249
	Error Message: $Y0250
	Error Message: $Y0251
	Error Message: $Y0252
	Error Message: $Y0253
	Error Message: $Y0254
	Error Message: $Y0255
	Error Message: $Y0256
	Error Message: $Y0257
	Error Message: $Y0258
	Error Message: $Y0259
	Error Message: $Y0260
	Error Message: $Y0261
	Error Message: $Y0262
	Error Message: $Y0263
	Error Message: $Y0264
	Error Message: $Y0265
	Error Message: $Y0266
	Error Message: $Y0267
	Error Message: $Y0268
	Error Message: $Y0269
	Error Message: $Y0270
	Error Message: $Y0271
	Error Message: $Y0272
	Error Message: $Y0273
	Error Message: $Y0274
	Error Message: $Y0275
	Error Message: $Y0276
	Error Message: $Y0277
	Error Message: $Y0278
	Error Message: $Y0279
	Error Message: $Y0280
	Error Message: $Y0281
	Error Message: $Y0282
	Error Message: $Y0283
	Error Message: $Y0284
	Error Message: $Y0285
	Error Message: $Y0286
	Error Message: $Y0287
	Error Message: $Y0288
	Error Message: $Y0289
	Error Message: $Y0290
	Error Message: $Y0291
	Error Message: $Y0292
	Error Message: $Y0293
	Error Message: $Y0294
	Error Message: $Y0295
	Error Message: $Y0296
	Error Message: $Y0297

	400-series Error Messages
	Error Message: $Y0400
	Error Message: $Y0401
	Error Message: $Y0402
	Error Message: $Y0403
	Error Message: $Y0404
	Error Message: $Y0405
	Error Message: $Y0406
	Error Message: $Y0408
	Error Message: $Y0420
	Error Message: $Y0421
	Error Message: $Y0422
	Error Message: $Y0430
	Error Message: $Y0431
	Error message: $Y0432
	Error Message: $Y0434
	Error Message: $Y0435
	Error Message: $Y0436
	Error Message: $Y0437
	Error Message: $Y0438
	Error Message: $Y0440
	Error Message: $Y0441
	Error Message: $Y0442
	Error Message: $Y0450
	Error Message: $Y0451
	Error Message: $Y0452
	Error Message: $Y0453
	Error Message: $Y0454
	Error Message: $Y0460
	Error Message: $Y0470
	Error Message: $Y0480

	500-series Error Messages
	Error Message: $Y0500
	Error Message: $Y0501
	Error Message: $Y0502
	Error Message: $Y0503
	Error Message: $Y0504
	Error Message: $Y0505
	Error Message: $Y0506
	Error Message: $Y0507
	Error Message: $Y0508
	Error Message: $Y0509
	Error Message: $Y0510
	Error Message: $Y0511
	Error Message: $Y0512
	Error Message: $Y0513
	Error Message: $Y0514
	Error Message: $Y0515
	Error Message: $Y0516
	Error Message: $Y0517
	Error Message: $Y0518
	Error Message: $Y0519
	Error Message: $Y0520
	Error Message: $Y0521
	Error Message: $Y0524
	Error Message: $Y0525
	Error Message: $Y0526
	Error Message: $Y0527
	Error Message: $Y0528
	Error Message: $Y0529
	Error Message: $Y0530
	Error Message: $Y0531
	Error Message: $Y0532
	Error Message: $Y0533

	600-series Error Messages
	Error Message: $Y0600
	Error Message: $Y0601
	Error Message: $Y0602
	Error Message: $Y0603
	Error Message: $Y0604
	Error Message: $Y0605
	Error Message: $Y0606
	Error Message: $Y0607
	Error Message: $Y0608
	Error Message: $Y0609

	700-series Error Messages
	Error Message: $Y0700
	Error Message: $Y0701
	Error Message: $Y0702
	Error Message: $Y0703

	Revision History

